Comptes Rendus
Mathematical Physics/Numerical Analysis
An asymptotically stable Particle-in-Cell (PIC) scheme for collisionless plasma simulations near quasineutrality
[Une méthode ‘Particle-in-cell’ asymptotiquement stable pour les plasmas non-collisionnels proches de la quasineutralité]
Comptes Rendus. Mathématique, Volume 343 (2006) no. 9, pp. 613-618.

Nous proposons un nouveau schéma ‘Particle-in-cell’ pour l'équation de Vlasov–Poisson. Ce schéma reste stable même quand la longueur de Debye et la période plasma tendent vers zéro sans restriction sur la taille des mailles spatiale et temporelle. Il repose sur une méthode d'intégration semi-implicite de la trajectoire des particules. Le coût d'intégration numérique est celui d'une méthode explicite habituelle grâce à une reformulation de l'équation de Poisson.

We propose a new Particle-in-Cell scheme for the Vlasov–Poisson equation. This scheme remains stable when the Debye length and plasma period tend to zero without any restriction on the size of the time and length step. It relies on a semi-implicit integration of the particle trajectories. The numerical integration cost is that of the standard explicit method thanks to the use of a reformulation of the Poisson equation.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.09.033

Pierre Degond 1 ; Fabrice Deluzet 1 ; Laurent Navoret 1, 2

1 MIP, UMR 5640 (CNRS-UPS-INSA-UT1), université Paul-Sabatier, 31062 Toulouse cedex 09, France
2 Département de mathématiques, École normale supérieure de Cachan, 61, avenue du Président Wilson, 94235 Cachan cedex, France
@article{CRMATH_2006__343_9_613_0,
     author = {Pierre Degond and Fabrice Deluzet and Laurent Navoret},
     title = {An asymptotically stable {Particle-in-Cell} {(PIC)} scheme for collisionless plasma simulations near quasineutrality},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {613--618},
     publisher = {Elsevier},
     volume = {343},
     number = {9},
     year = {2006},
     doi = {10.1016/j.crma.2006.09.033},
     language = {en},
}
TY  - JOUR
AU  - Pierre Degond
AU  - Fabrice Deluzet
AU  - Laurent Navoret
TI  - An asymptotically stable Particle-in-Cell (PIC) scheme for collisionless plasma simulations near quasineutrality
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 613
EP  - 618
VL  - 343
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2006.09.033
LA  - en
ID  - CRMATH_2006__343_9_613_0
ER  - 
%0 Journal Article
%A Pierre Degond
%A Fabrice Deluzet
%A Laurent Navoret
%T An asymptotically stable Particle-in-Cell (PIC) scheme for collisionless plasma simulations near quasineutrality
%J Comptes Rendus. Mathématique
%D 2006
%P 613-618
%V 343
%N 9
%I Elsevier
%R 10.1016/j.crma.2006.09.033
%G en
%F CRMATH_2006__343_9_613_0
Pierre Degond; Fabrice Deluzet; Laurent Navoret. An asymptotically stable Particle-in-Cell (PIC) scheme for collisionless plasma simulations near quasineutrality. Comptes Rendus. Mathématique, Volume 343 (2006) no. 9, pp. 613-618. doi : 10.1016/j.crma.2006.09.033. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.09.033/

[1] C.K. Birdsall; A.B. Langdon Plasma Physics Via Computer Simulation, Institute of Physics, 2004

[2] Y. Brenier Convergence of the Vlasov–Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, Volume 25 (2000), pp. 737-754

[3] F.F. Chen Introduction to Plasma Physics and Controlled Fusion, vol. 1, Plenum Press, 1974

[4] B.I. Cohen; A.B. Langdon; A. Friedman Implicit time integration for plasma simulation, J. Comput. Phys., Volume 46 (1982), p. 15

[5] G.-H. Cottet; P.-A. Raviart Particle methods for the one-dimensional Vlasov–Poisson equations, SIAM J. Numer. Anal., Volume 21 (1984), pp. 52-76

[6] P. Crispel; P. Degond; M.-H. Vignal An asymptotically stable discretization for the Euler–Poisson system in the quasineutral limit, C. R. Acad. Sci. Paris, Ser. I, Volume 341 (2005), pp. 341-346

[7] P. Crispel, P. Degond, M.-H. Vignal, An asymptotic preserving scheme for the two-fluid Euler–Poisson model in the quasineutral limit, J. Comput. Phys., in press

[8] K. Ganguly; H.D. Victory On the convergence of particle methods for multidimensional Vlasov–Poisson systems, SIAM J. Numer. Anal., Volume 26 (1989), pp. 249-288

[9] R. Glassey; J. Schaeffer Convergence of a particle method for the relativistic Vlasov–Maxwell system, SIAM J. Numer. Anal., Volume 28 (1991), pp. 1-25

[10] R.W. Hockney; J.W. Eastwood Computer Simulation Using Particles, Institute of Physics, 1988

[11] N.A. Krall; A.W. Trivelpiece Principles of Plasma Physics, San Francisco Press, 1986

[12] A.B. Langdon; B.I. Cohen; A. Friedman Direct implicit large time-step particle simulation of plasmas, J. Comput. Phys., Volume 51 (1983), p. 107

[13] R.J. Mason Implicit moment particle simulation of plasmas, J. Comput. Phys., Volume 41 (1981), p. 233

[14] R.J. Mason Implicit moment PIC-hybrid simulation of collisional plasmas, J. Comput. Phys., Volume 51 (1983), p. 484

  • Hongtao Liu; Xiaofeng Cai; Yong Cao; Giovanni Lapenta An asymptotic-preserving conservative semi-Lagrangian scheme for the Vlasov-Maxwell system in the quasi-neutral limit, Journal of Computational Physics, Volume 528 (2025), p. 113840 | DOI:10.1016/j.jcp.2025.113840
  • Hongtao Liu; Feng Shi; Jie Wan; Xiaoming He; Yong Cao Discrete unified gas kinetic scheme for a reformulated BGK–Vlasov–Poisson system in all electrostatic plasma regimes, Computer Physics Communications, Volume 255 (2020), p. 107400 | DOI:10.1016/j.cpc.2020.107400
  • A. Crestetto; F. Deluzet; D. Doyen Bridging kinetic plasma descriptions and single-fluid models, Journal of Plasma Physics, Volume 86 (2020) no. 5 | DOI:10.1017/s0022377820000884
  • P. Cazeaux; J.S. Hesthaven Projective multiscale time-integration for electrostatic particle-in-cell methods, Computer Physics Communications, Volume 236 (2019), p. 34 | DOI:10.1016/j.cpc.2018.10.012
  • Pierre Degond; Fabrice Deluzet Asymptotic-Preserving methods and multiscale models for plasma physics, Journal of Computational Physics, Volume 336 (2017), p. 429 | DOI:10.1016/j.jcp.2017.02.009
  • Nicolas Crouseilles; Giacomo Dimarco; Marie-Héléne Vignal Multiscale Schemes for the BGK–Vlasov–Poisson System in the Quasi-Neutral and Fluid Limits. Stability Analysis and First Order Schemes, Multiscale Modeling Simulation, Volume 14 (2016) no. 1, p. 65 | DOI:10.1137/140991558
  • Stephen Pankavich A particle method for a collisionless plasma with infinite mass, Mathematics and Computers in Simulation, Volume 82 (2012) no. 7, p. 1278 | DOI:10.1016/j.matcom.2011.08.007
  • Chainais-Hillairet Claire; Vignal Marie-Hélène Asymptotic preserving schemes in the quasi-neutral limit for the drift-diffusion system, Finite Volumes for Complex Applications VI Problems Perspectives, Volume 4 (2011), p. 205 | DOI:10.1007/978-3-642-20671-9_22
  • Nicolas Vauchelet; Jean-Paul Dudon; Christophe Besse; Thierry Goudon Comparison of Vlasov solvers for spacecraft charging simulation, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 44 (2010) no. 1, p. 109 | DOI:10.1051/m2an/2009042
  • Antti Snicker; Taina Kurki-Suonio; Seppo K. Sipila Realistic Simulations of Fast-Ion Wall Distribution Including Effects Due to Finite Larmor Radius, IEEE Transactions on Plasma Science, Volume 38 (2010) no. 9, p. 2177 | DOI:10.1109/tps.2010.2056705
  • B.I. Cohen; A.J. Kemp; L. Divol Simulation of laser–plasma interactions and fast-electron transport in inhomogeneous plasma, Journal of Computational Physics, Volume 229 (2010) no. 12, p. 4591 | DOI:10.1016/j.jcp.2010.03.001
  • Pierre Degond; Fabrice Deluzet; Laurent Navoret; An-Bang Sun; Marie-Hélène Vignal Asymptotic-Preserving Particle-In-Cell method for the Vlasov–Poisson system near quasineutrality, Journal of Computational Physics, Volume 229 (2010) no. 16, p. 5630 | DOI:10.1016/j.jcp.2010.04.001
  • Francis Filbet; Shi Jin A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources, Journal of Computational Physics, Volume 229 (2010) no. 20, p. 7625 | DOI:10.1016/j.jcp.2010.06.017
  • P. Degond; F. Deluzet; A. Sangam; M.-H. Vignal An Asymptotic Preserving scheme for the Euler equations in a strong magnetic field, Journal of Computational Physics, Volume 228 (2009) no. 10, p. 3540 | DOI:10.1016/j.jcp.2008.12.040
  • N. Ben Abdallah; M.J. Cáceres; J.A. Carrillo; F. Vecil A deterministic solver for a hybrid quantum-classical transport model in nanoMOSFETs, Journal of Computational Physics, Volume 228 (2009) no. 17, p. 6553 | DOI:10.1016/j.jcp.2009.06.001
  • R. Belaouar; N. Crouseilles; P. Degond; E. Sonnendrücker An Asymptotically Stable Semi-Lagrangian scheme in the Quasi-neutral Limit, Journal of Scientific Computing, Volume 41 (2009) no. 3, p. 341 | DOI:10.1007/s10915-009-9302-4
  • Pierre Degond; Jian-Guo Liu; Marie-Hélène Vignal Analysis of an Asymptotic Preserving Scheme for the Euler–Poisson System in the Quasineutral Limit, SIAM Journal on Numerical Analysis, Volume 46 (2008) no. 3, p. 1298 | DOI:10.1137/070690584

Cité par 17 documents. Sources : Crossref

Commentaires - Politique