[Une méthode ‘Particle-in-cell’ asymptotiquement stable pour les plasmas non-collisionnels proches de la quasineutralité]
Nous proposons un nouveau schéma ‘Particle-in-cell’ pour l'équation de Vlasov–Poisson. Ce schéma reste stable même quand la longueur de Debye et la période plasma tendent vers zéro sans restriction sur la taille des mailles spatiale et temporelle. Il repose sur une méthode d'intégration semi-implicite de la trajectoire des particules. Le coût d'intégration numérique est celui d'une méthode explicite habituelle grâce à une reformulation de l'équation de Poisson.
We propose a new Particle-in-Cell scheme for the Vlasov–Poisson equation. This scheme remains stable when the Debye length and plasma period tend to zero without any restriction on the size of the time and length step. It relies on a semi-implicit integration of the particle trajectories. The numerical integration cost is that of the standard explicit method thanks to the use of a reformulation of the Poisson equation.
Accepté le :
Publié le :
Pierre Degond 1 ; Fabrice Deluzet 1 ; Laurent Navoret 1, 2
@article{CRMATH_2006__343_9_613_0, author = {Pierre Degond and Fabrice Deluzet and Laurent Navoret}, title = {An asymptotically stable {Particle-in-Cell} {(PIC)} scheme for collisionless plasma simulations near quasineutrality}, journal = {Comptes Rendus. Math\'ematique}, pages = {613--618}, publisher = {Elsevier}, volume = {343}, number = {9}, year = {2006}, doi = {10.1016/j.crma.2006.09.033}, language = {en}, }
TY - JOUR AU - Pierre Degond AU - Fabrice Deluzet AU - Laurent Navoret TI - An asymptotically stable Particle-in-Cell (PIC) scheme for collisionless plasma simulations near quasineutrality JO - Comptes Rendus. Mathématique PY - 2006 SP - 613 EP - 618 VL - 343 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2006.09.033 LA - en ID - CRMATH_2006__343_9_613_0 ER -
%0 Journal Article %A Pierre Degond %A Fabrice Deluzet %A Laurent Navoret %T An asymptotically stable Particle-in-Cell (PIC) scheme for collisionless plasma simulations near quasineutrality %J Comptes Rendus. Mathématique %D 2006 %P 613-618 %V 343 %N 9 %I Elsevier %R 10.1016/j.crma.2006.09.033 %G en %F CRMATH_2006__343_9_613_0
Pierre Degond; Fabrice Deluzet; Laurent Navoret. An asymptotically stable Particle-in-Cell (PIC) scheme for collisionless plasma simulations near quasineutrality. Comptes Rendus. Mathématique, Volume 343 (2006) no. 9, pp. 613-618. doi : 10.1016/j.crma.2006.09.033. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.09.033/
[1] Plasma Physics Via Computer Simulation, Institute of Physics, 2004
[2] Convergence of the Vlasov–Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, Volume 25 (2000), pp. 737-754
[3] Introduction to Plasma Physics and Controlled Fusion, vol. 1, Plenum Press, 1974
[4] Implicit time integration for plasma simulation, J. Comput. Phys., Volume 46 (1982), p. 15
[5] Particle methods for the one-dimensional Vlasov–Poisson equations, SIAM J. Numer. Anal., Volume 21 (1984), pp. 52-76
[6] An asymptotically stable discretization for the Euler–Poisson system in the quasineutral limit, C. R. Acad. Sci. Paris, Ser. I, Volume 341 (2005), pp. 341-346
[7] P. Crispel, P. Degond, M.-H. Vignal, An asymptotic preserving scheme for the two-fluid Euler–Poisson model in the quasineutral limit, J. Comput. Phys., in press
[8] On the convergence of particle methods for multidimensional Vlasov–Poisson systems, SIAM J. Numer. Anal., Volume 26 (1989), pp. 249-288
[9] Convergence of a particle method for the relativistic Vlasov–Maxwell system, SIAM J. Numer. Anal., Volume 28 (1991), pp. 1-25
[10] Computer Simulation Using Particles, Institute of Physics, 1988
[11] Principles of Plasma Physics, San Francisco Press, 1986
[12] Direct implicit large time-step particle simulation of plasmas, J. Comput. Phys., Volume 51 (1983), p. 107
[13] Implicit moment particle simulation of plasmas, J. Comput. Phys., Volume 41 (1981), p. 233
[14] Implicit moment PIC-hybrid simulation of collisional plasmas, J. Comput. Phys., Volume 51 (1983), p. 484
- An asymptotic-preserving conservative semi-Lagrangian scheme for the Vlasov-Maxwell system in the quasi-neutral limit, Journal of Computational Physics, Volume 528 (2025), p. 113840 | DOI:10.1016/j.jcp.2025.113840
- Discrete unified gas kinetic scheme for a reformulated BGK–Vlasov–Poisson system in all electrostatic plasma regimes, Computer Physics Communications, Volume 255 (2020), p. 107400 | DOI:10.1016/j.cpc.2020.107400
- Bridging kinetic plasma descriptions and single-fluid models, Journal of Plasma Physics, Volume 86 (2020) no. 5 | DOI:10.1017/s0022377820000884
- Projective multiscale time-integration for electrostatic particle-in-cell methods, Computer Physics Communications, Volume 236 (2019), p. 34 | DOI:10.1016/j.cpc.2018.10.012
- Asymptotic-Preserving methods and multiscale models for plasma physics, Journal of Computational Physics, Volume 336 (2017), p. 429 | DOI:10.1016/j.jcp.2017.02.009
- Multiscale Schemes for the BGK–Vlasov–Poisson System in the Quasi-Neutral and Fluid Limits. Stability Analysis and First Order Schemes, Multiscale Modeling Simulation, Volume 14 (2016) no. 1, p. 65 | DOI:10.1137/140991558
- A particle method for a collisionless plasma with infinite mass, Mathematics and Computers in Simulation, Volume 82 (2012) no. 7, p. 1278 | DOI:10.1016/j.matcom.2011.08.007
- Asymptotic preserving schemes in the quasi-neutral limit for the drift-diffusion system, Finite Volumes for Complex Applications VI Problems Perspectives, Volume 4 (2011), p. 205 | DOI:10.1007/978-3-642-20671-9_22
- Comparison of Vlasov solvers for spacecraft charging simulation, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 44 (2010) no. 1, p. 109 | DOI:10.1051/m2an/2009042
- Realistic Simulations of Fast-Ion Wall Distribution Including Effects Due to Finite Larmor Radius, IEEE Transactions on Plasma Science, Volume 38 (2010) no. 9, p. 2177 | DOI:10.1109/tps.2010.2056705
- Simulation of laser–plasma interactions and fast-electron transport in inhomogeneous plasma, Journal of Computational Physics, Volume 229 (2010) no. 12, p. 4591 | DOI:10.1016/j.jcp.2010.03.001
- Asymptotic-Preserving Particle-In-Cell method for the Vlasov–Poisson system near quasineutrality, Journal of Computational Physics, Volume 229 (2010) no. 16, p. 5630 | DOI:10.1016/j.jcp.2010.04.001
- A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources, Journal of Computational Physics, Volume 229 (2010) no. 20, p. 7625 | DOI:10.1016/j.jcp.2010.06.017
- An Asymptotic Preserving scheme for the Euler equations in a strong magnetic field, Journal of Computational Physics, Volume 228 (2009) no. 10, p. 3540 | DOI:10.1016/j.jcp.2008.12.040
- A deterministic solver for a hybrid quantum-classical transport model in nanoMOSFETs, Journal of Computational Physics, Volume 228 (2009) no. 17, p. 6553 | DOI:10.1016/j.jcp.2009.06.001
- An Asymptotically Stable Semi-Lagrangian scheme in the Quasi-neutral Limit, Journal of Scientific Computing, Volume 41 (2009) no. 3, p. 341 | DOI:10.1007/s10915-009-9302-4
- Analysis of an Asymptotic Preserving Scheme for the Euler–Poisson System in the Quasineutral Limit, SIAM Journal on Numerical Analysis, Volume 46 (2008) no. 3, p. 1298 | DOI:10.1137/070690584
Cité par 17 documents. Sources : Crossref
Commentaires - Politique