We compute the homogenized-concentrated limit for a pair of non-linearly coupled diffusion equations in a perforated cylindric domain with coaxial cylindric holes periodically distributed along its axis. This problem arises from visual transduction.
On calcule la limite homogénéisée-concentrée pour deux équations de diffusion couplées de façon non linéaire dans un domaine cylindrique avec une distribution périodique de cavités cylindriques coaxiales le long de son axe. Ce problème émane de la transduction visuelle.
Accepted:
Published online:
Daniele Andreucci 1; Paolo Bisegna 2; Emmanuele DiBenedetto 3
@article{CRMATH_2002__335_4_329_0, author = {Daniele Andreucci and Paolo Bisegna and Emmanuele DiBenedetto}, title = {Homogenization and concentrated capacity in reticular almost disconnected structures}, journal = {Comptes Rendus. Math\'ematique}, pages = {329--332}, publisher = {Elsevier}, volume = {335}, number = {4}, year = {2002}, doi = {10.1016/S1631-073X(02)02482-2}, language = {en}, }
TY - JOUR AU - Daniele Andreucci AU - Paolo Bisegna AU - Emmanuele DiBenedetto TI - Homogenization and concentrated capacity in reticular almost disconnected structures JO - Comptes Rendus. Mathématique PY - 2002 SP - 329 EP - 332 VL - 335 IS - 4 PB - Elsevier DO - 10.1016/S1631-073X(02)02482-2 LA - en ID - CRMATH_2002__335_4_329_0 ER -
%0 Journal Article %A Daniele Andreucci %A Paolo Bisegna %A Emmanuele DiBenedetto %T Homogenization and concentrated capacity in reticular almost disconnected structures %J Comptes Rendus. Mathématique %D 2002 %P 329-332 %V 335 %N 4 %I Elsevier %R 10.1016/S1631-073X(02)02482-2 %G en %F CRMATH_2002__335_4_329_0
Daniele Andreucci; Paolo Bisegna; Emmanuele DiBenedetto. Homogenization and concentrated capacity in reticular almost disconnected structures. Comptes Rendus. Mathématique, Volume 335 (2002) no. 4, pp. 329-332. doi : 10.1016/S1631-073X(02)02482-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02482-2/
[1] D. Andreucci, P. Bisegna, E. DiBenedetto, H.H. Hamm, Mathematical models of the dynamics of the second messengers in visual transduction: Homogenization and concentrated capacity, Preprint, 2002
[2] D. Andreucci, P. Bisegna, E. DiBenedetto, Homogenization and concentrated capacity limits for a problem in visual transduction, Preprint, 2002
[3] Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations, Arch. Rational Mech. Anal., Volume 136 (1996), pp. 119-161
[4] Homogenization of Reticulated Structures, Appl. Math. Sci., 136, Springer, New York, NY, 1998
[5] Diffusion through thin layers with high specific heat, Asymptotic Anal., Volume 3 (1990), pp. 249-263
[6] Real Analysis, Birkhäuser, Boston, 2002
[7] Stefan problems with a concentrated capacity, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), Volume 1 (1998) no. 1, pp. 71-81
[8] Phototransduction in vertebrate rods and cones: Molecular mechanisms of amplification, recovery and light adaptation, Handbook of Biological Physics, 3, Elsevier, 2000 (Chapter 5)
Cited by Sources:
Comments - Policy