Comptes Rendus
An anomaly formula for Ray–Singer metrics on manifolds with boundary
[Formules d'anomalie pour les métriques de Ray–Singer sur les variétés à bord]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 7, pp. 603-608.

On annonce une formule d'anomalie pour les métriques de Ray–Singer d'un fibré plat F sur une variété à bord X . On ne suppose ni que la métrique sur F est plate, ni que la métrique sur X a une structure produit près du bord.

We establish an anomaly formula for Ray–Singer metrics defined by a Hermitian metric on a flat vector bundle over a Riemannian manifold with boundary. We do not assume that the Hermitian metric on the flat vector bundle is flat, nor that the Riemannian metric has product structure near the boundary.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02496-2

Jochen Brüning 1 ; Xiaonan Ma 2

1 Humboldt-Universität zu Berlin, Institut für Mathematik, Rudower Chaussee 25, 12489 Berlin, Germany
2 Centre de mathématiques, École polytechnique, 91128 Palaiseau cedex, France
@article{CRMATH_2002__335_7_603_0,
     author = {Jochen Br\"uning and Xiaonan Ma},
     title = {An anomaly formula for {Ray{\textendash}Singer} metrics on manifolds with boundary},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {603--608},
     publisher = {Elsevier},
     volume = {335},
     number = {7},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02496-2},
     language = {en},
}
TY  - JOUR
AU  - Jochen Brüning
AU  - Xiaonan Ma
TI  - An anomaly formula for Ray–Singer metrics on manifolds with boundary
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 603
EP  - 608
VL  - 335
IS  - 7
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02496-2
LA  - en
ID  - CRMATH_2002__335_7_603_0
ER  - 
%0 Journal Article
%A Jochen Brüning
%A Xiaonan Ma
%T An anomaly formula for Ray–Singer metrics on manifolds with boundary
%J Comptes Rendus. Mathématique
%D 2002
%P 603-608
%V 335
%N 7
%I Elsevier
%R 10.1016/S1631-073X(02)02496-2
%G en
%F CRMATH_2002__335_7_603_0
Jochen Brüning; Xiaonan Ma. An anomaly formula for Ray–Singer metrics on manifolds with boundary. Comptes Rendus. Mathématique, Volume 335 (2002) no. 7, pp. 603-608. doi : 10.1016/S1631-073X(02)02496-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02496-2/

[1] J.-M. Bismut; G. Lebeau Complex immersions and Quillen metrics, Publ. Math. IHES, Volume 74 (1991), pp. 1-297

[2] J.-M. Bismut; W. Zhang An Extension of a Theorem by Cheeger and Müller, Astérisque, 205, 1992

[3] J.-M. Bismut; W. Zhang Milnor and Ray–Singer metrics on the equivariant determinant of a flat vector bundle, Geom. Funct. Anal., Volume 4 (1994), pp. 136-212

[4] R. Bott; L. Tu Differential Forms in Algebraic Topology, Graduate Texts in Math., 82, Springer, New York, 1982

[5] J. Brüning, X. Ma, An anomaly formula for Ray–Singer metrics on manifolds with boundary, to appear

[6] J. Cheeger Analytic torsion and the heat equation, Ann of Math., Volume 109 (1979), pp. 259-322

[7] S.S. Chern On the curvatura integra in a Riemannian manifold, Ann. of Math., Volume 46 (1945), pp. 674-684

[8] X. Dai; H. Fang Analytic torsion and R-torsion for manifolds with boundary, Asian J. Math., Volume 4 (2000), pp. 695-714

[9] J. Lott; M. Rothenberg Analytic torsion for group actions, J. Differential Geom., Volume 34 (1991), pp. 431-481

[10] W. Lück Analytic and topological torsion for manifolds with boundary and symmetry, J. Differential Geom., Volume 37 (1993), pp. 263-322

[11] V. Mathai; D. Quillen Superconnections, Thom classes, and equivariant differential forms, Topology, Volume 25 (1986), pp. 85-110

[12] W. Müller Analytic torsion and R-torsion of Riemannian manifolds, Adv. in Math., Volume 28 (1978), pp. 233-305

[13] W. Müller Analytic torsion and R-torsion for unimodular representations, J. Amer. Math. Soc., Volume 6 (1993), pp. 721-753

[14] D.B. Ray; I.M. Singer R-torsion and the Laplacian on Riemannian manifolds, Adv. in Math., Volume 7 (1971), pp. 145-210

Cité par Sources :

Commentaires - Politique