On explicite les propriétés d'analyse du Laplacien hypoelliptique sur le fibré cotangent d'une variété Riemannienne compacte X. On montre qu'il est effectivement une déformation du Laplacien ordinaire sur X. On relie la torsion analytique du Laplacien hypoelliptique à la torsion analytique de Ray–Singer du Laplacien sur X.
We establish analytical properties of the hypoelliptic Laplacian on the cotangent bundle of a Riemannian manifold. We show that it is, in the proper sense, a deformation of the classical Laplacian on X. We give a formula relating the analytic torsion of the hypoelliptic Laplacian to the Ray–Singer analytic torsion of the Laplacian of X.
Accepté le :
Publié le :
Jean-Michel Bismut 1 ; Gilles Lebeau 2
@article{CRMATH_2005__341_2_113_0, author = {Jean-Michel Bismut and Gilles Lebeau}, title = {Laplacien hypoelliptique et torsion analytique}, journal = {Comptes Rendus. Math\'ematique}, pages = {113--118}, publisher = {Elsevier}, volume = {341}, number = {2}, year = {2005}, doi = {10.1016/j.crma.2005.06.003}, language = {fr}, }
Jean-Michel Bismut; Gilles Lebeau. Laplacien hypoelliptique et torsion analytique. Comptes Rendus. Mathématique, Volume 341 (2005) no. 2, pp. 113-118. doi : 10.1016/j.crma.2005.06.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.06.003/
[1] Equivariant immersions and Quillen metrics, J. Differential Geom., Volume 41 (1995) no. 1, pp. 53-157
[2] Une déformation de la théorie de Hodge sur le fibré cotangent, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 471-476
[3] Le Laplacien hypoelliptique sur le fibré cotangent, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 555-559
[4] Une déformation en famille du complexe de de Rham–Hodge, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 623-627
[5] Le Laplacien hypoelliptique, Séminaire : Équations aux Dérivées Partielles, 2003–2004, Exp. No. XXII, École Polytechnique, Palaiseau, 2004, p. 15
[6] The hypoelliptic Laplacian on the cotangent bundle, J. Amer. Math. Soc., Volume 18 (2005) no. 2, pp. 379-476
[7] Equivariant de Rham torsions, Ann. of Math., Volume 159 (2004), pp. 53-216
[8] J.-M. Bismut, G. Lebeau, The hypoelliptic Laplacian and Ray–Singer metrics (2005), à paraître
[9] Flat vector bundles, direct images and higher real analytic torsion, J. Amer. Math. Soc., Volume 8 (1995) no. 2, pp. 291-363
[10] An extension of a theorem by Cheeger and Müller, Astérisque, Volume 205 (1992), p. 235 (With an appendix by François Laudenbach)
[11] Hypoelliptic Estimates and Spectral Theory for Fokker–Planck Operators and Witten Laplacians, Lecture Notes in Math., vol. 1862, Springer-Verlag, Berlin, 2005
[12] Isotropic hypoellipticity and trend to equilibrium for the Fokker–Planck equation with a high-degree potential, Arch. Ration. Mech. Anal., Volume 171 (2004) no. 2, pp. 151-218
[13] The Analysis of Linear Partial Differential Operators. III. Pseudodifferential operators, Grundlehren Math. Wiss., vol. 274, Springer-Verlag, Berlin, 1985
[14] Note sur la fonction
[15] R-torsion and the Laplacian on Riemannian manifolds, Adv. Math., Volume 7 (1971), pp. 145-210
[16] Supersymmetry and Morse theory, J. Differential Geom., Volume 17 (1983) no. 4, pp. 661-692 (1982)
- Perturbation of Conservation Laws and Averaging on Manifolds, Computation and Combinatorics in Dynamics, Stochastics and Control, Volume 13 (2018), p. 499 | DOI:10.1007/978-3-030-01593-0_18
- Homogenisation on homogeneous spaces, Journal of the Mathematical Society of Japan, Volume 70 (2018) no. 2 | DOI:10.2969/jmsj/07027546
- Loop Spaces and the hypoelliptic Laplacian, Communications on Pure and Applied Mathematics, Volume 61 (2008) no. 4, p. 559 | DOI:10.1002/cpa.20190
Cité par 3 documents. Sources : Crossref
Commentaires - Politique