Comptes Rendus
Géométrie différentielle
Laplacien hypoelliptique et torsion analytique
Comptes Rendus. Mathématique, Volume 341 (2005) no. 2, pp. 113-118.

On explicite les propriétés d'analyse du Laplacien hypoelliptique sur le fibré cotangent d'une variété Riemannienne compacte X. On montre qu'il est effectivement une déformation du Laplacien ordinaire sur X. On relie la torsion analytique du Laplacien hypoelliptique à la torsion analytique de Ray–Singer du Laplacien sur X.

We establish analytical properties of the hypoelliptic Laplacian on the cotangent bundle of a Riemannian manifold. We show that it is, in the proper sense, a deformation of the classical Laplacian on X. We give a formula relating the analytic torsion of the hypoelliptic Laplacian to the Ray–Singer analytic torsion of the Laplacian of X.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.06.003

Jean-Michel Bismut 1 ; Gilles Lebeau 2

1 Département de mathématique, université Paris-sud, bâtiment 425, 91405 Orsay cedex, France
2 Département de mathématiques, université de Nice Sophia-Antipolis, parc Valrose, 06108 Nice cedex 02, France
@article{CRMATH_2005__341_2_113_0,
     author = {Jean-Michel Bismut and Gilles Lebeau},
     title = {Laplacien hypoelliptique et torsion analytique},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {113--118},
     publisher = {Elsevier},
     volume = {341},
     number = {2},
     year = {2005},
     doi = {10.1016/j.crma.2005.06.003},
     language = {fr},
}
TY  - JOUR
AU  - Jean-Michel Bismut
AU  - Gilles Lebeau
TI  - Laplacien hypoelliptique et torsion analytique
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 113
EP  - 118
VL  - 341
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2005.06.003
LA  - fr
ID  - CRMATH_2005__341_2_113_0
ER  - 
%0 Journal Article
%A Jean-Michel Bismut
%A Gilles Lebeau
%T Laplacien hypoelliptique et torsion analytique
%J Comptes Rendus. Mathématique
%D 2005
%P 113-118
%V 341
%N 2
%I Elsevier
%R 10.1016/j.crma.2005.06.003
%G fr
%F CRMATH_2005__341_2_113_0
Jean-Michel Bismut; Gilles Lebeau. Laplacien hypoelliptique et torsion analytique. Comptes Rendus. Mathématique, Volume 341 (2005) no. 2, pp. 113-118. doi : 10.1016/j.crma.2005.06.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.06.003/

[1] J.-M. Bismut Equivariant immersions and Quillen metrics, J. Differential Geom., Volume 41 (1995) no. 1, pp. 53-157

[2] J.-M. Bismut Une déformation de la théorie de Hodge sur le fibré cotangent, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 471-476

[3] J.-M. Bismut Le Laplacien hypoelliptique sur le fibré cotangent, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 555-559

[4] J.-M. Bismut Une déformation en famille du complexe de de Rham–Hodge, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 623-627

[5] J.-M. Bismut Le Laplacien hypoelliptique, Séminaire : Équations aux Dérivées Partielles, 2003–2004, Exp. No. XXII, École Polytechnique, Palaiseau, 2004, p. 15

[6] J.-M. Bismut The hypoelliptic Laplacian on the cotangent bundle, J. Amer. Math. Soc., Volume 18 (2005) no. 2, pp. 379-476

[7] J.-M. Bismut; S. Goette Equivariant de Rham torsions, Ann. of Math., Volume 159 (2004), pp. 53-216

[8] J.-M. Bismut, G. Lebeau, The hypoelliptic Laplacian and Ray–Singer metrics (2005), à paraître

[9] J.-M. Bismut; J. Lott Flat vector bundles, direct images and higher real analytic torsion, J. Amer. Math. Soc., Volume 8 (1995) no. 2, pp. 291-363

[10] J.-M. Bismut; W. Zhang An extension of a theorem by Cheeger and Müller, Astérisque, Volume 205 (1992), p. 235 (With an appendix by François Laudenbach)

[11] B. Helffer; F. Nier Hypoelliptic Estimates and Spectral Theory for Fokker–Planck Operators and Witten Laplacians, Lecture Notes in Math., vol. 1862, Springer-Verlag, Berlin, 2005

[12] F. Hérau; F. Nier Isotropic hypoellipticity and trend to equilibrium for the Fokker–Planck equation with a high-degree potential, Arch. Ration. Mech. Anal., Volume 171 (2004) no. 2, pp. 151-218

[13] L. Hörmander The Analysis of Linear Partial Differential Operators. III. Pseudodifferential operators, Grundlehren Math. Wiss., vol. 274, Springer-Verlag, Berlin, 1985

[14] M. Lerch Note sur la fonction r(w,x,s)=0e2iπkx(w+k)s, Acta Math., Volume 11 (1887–1888), pp. 19-24

[15] D.B. Ray; I.M. Singer R-torsion and the Laplacian on Riemannian manifolds, Adv. Math., Volume 7 (1971), pp. 145-210

[16] E. Witten Supersymmetry and Morse theory, J. Differential Geom., Volume 17 (1983) no. 4, pp. 661-692 (1982)

Cité par Sources :

Commentaires - Politique