On considère des operateurs de Schrödinger H sur
We consider quasi-periodic Schrödinger operators H on
Accepté le :
Publié le :
Jean Bourgain 1
@article{CRMATH_2002__335_6_529_0, author = {Jean Bourgain}, title = {Exposants de {Lyapounov} pour op\'erateurs de {Schr\"odinger} discr\`etes quasi-p\'eriodiques}, journal = {Comptes Rendus. Math\'ematique}, pages = {529--531}, publisher = {Elsevier}, volume = {335}, number = {6}, year = {2002}, doi = {10.1016/S1631-073X(02)02525-6}, language = {fr}, }
Jean Bourgain. Exposants de Lyapounov pour opérateurs de Schrödinger discrètes quasi-périodiques. Comptes Rendus. Mathématique, Volume 335 (2002) no. 6, pp. 529-531. doi : 10.1016/S1631-073X(02)02525-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02525-6/
[1] J. Bourgain, Green's function estimates for lattice Schrödinger operators and applications, Ann. of Math. Stud., à paraître
[2] J. Bourgain, Positivity and continuity of the Lyapounov exponent for shifts on
[3] On nonperturbative localization with quasi-periodic potential, Ann. of Math., Volume 152 (2000), pp. 835-879
[4] J. Bourgain, S. Jitomirskaya, Continuity of the Lyapounov exponent for quasi-periodic operators with analytic potential, à paraître
[5] Hölder continuity of the integrated density of states for quasi-periodic Schrödinger operators and averages of shifts of subharmonic function, Ann. of Math., Volume 154 (2001), pp. 155-203
[6] Bloch electrons in a magnetic field and the Ising model, Phys. Rev. Lett., Volume 85 (2000), pp. 4920-4923
[7] Positive Lyapounov exponents for Schrödinger operators with quasi-periodic potentials, CMP, Volume 142 (1991) no. 3, pp. 543-566
- Quantum Hamiltonians with quasi-ballistic dynamics and point spectrum, Journal of Differential Equations, Volume 235 (2007) no. 1, pp. 85-100 | DOI:10.1016/j.jde.2006.12.017 | Zbl:1116.81021
- Spectral Theory for Nonstationary Random Potentials, Interacting Stochastic Systems (2005), p. 103 | DOI:10.1007/3-540-27110-4_6
- Localization and Delocalization for Nonstationary Models, Multiscale Methods in Quantum Mechanics (2004), p. 185 | DOI:10.1007/978-0-8176-8202-6_15
- Недавний прогресс в квазипериодических решеточных операторах Шрeдингера и гамильтоновых дифференциальных уравнениях с частными производными, Успехи математических наук, Volume 59 (2004) no. 2, p. 37 | DOI:10.4213/rm716
Cité par 4 documents. Sources : Crossref, zbMATH
Commentaires - Politique