On démontre que, moyennant des hypothèses d'hyperbolicité sur le système dynamique T :X→X et de régularité sur la fonction
We prove that, assuming some hyperbolicity on the dynamical system T:X→X and some regularity on
Accepté le :
Publié le :
Thierry Bousch 1
@article{CRMATH_2002__335_6_533_0, author = {Thierry Bousch}, title = {Un lemme de {Ma\~n\'e} bilat\'eral}, journal = {Comptes Rendus. Math\'ematique}, pages = {533--536}, publisher = {Elsevier}, volume = {335}, number = {6}, year = {2002}, doi = {10.1016/S1631-073X(02)02527-X}, language = {fr}, }
Thierry Bousch. Un lemme de Mañé bilatéral. Comptes Rendus. Mathématique, Volume 335 (2002) no. 6, pp. 533-536. doi : 10.1016/S1631-073X(02)02527-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02527-X/
[1] Le poisson n'a pas d'arêtes, Ann. Inst. H. Poincaré Probab. Statist., Volume 36 (2000), pp. 489-508
[2] La condition de Walters, Ann. Sci. École Norm. Sup., Volume 34 (2001), pp. 287-311
[3] Cohomology classes of dynamically non-negative Ck functions, Invent. Math., Volume 148 (2002), pp. 207-217
[4] Lyapunov minimizing measures for expanding maps of the circle, Ergodic Theory Dynamical Systems, Volume 21 (2001), pp. 1379-1409
[5] J.-P. Conze, Y. Guivarc'h, Croissance des sommes ergodiques et principe variationnel, Manuscrit, 1993
[6] Cohomological inequalities for topological Markov chains, Funktsional Anal. i Prilozhen., Volume 33 (1999), pp. 91-93
- Ground states and periodic orbits for expanding Thurston maps, Mathematische Annalen, Volume 391 (2025) no. 3, pp. 3913-3985 | DOI:10.1007/s00208-024-03018-0 | Zbl:7986072
- Generic rotation sets, Ergodic Theory and Dynamical Systems, Volume 42 (2022) no. 1, pp. 250-262 | DOI:10.1017/etds.2020.129 | Zbl:1485.37040
- Ergodic optimization in dynamical systems, Ergodic Theory and Dynamical Systems, Volume 39 (2019) no. 10, pp. 2593-2618 | DOI:10.1017/etds.2017.142 | Zbl:1435.37009
- Introduction, Ergodic Optimization in the Expanding Case (2017), p. 1 | DOI:10.1007/978-3-319-66643-3_1
- On the Aubry–Mather theory for symbolic dynamics, Ergodic Theory and Dynamical Systems, Volume 28 (2008) no. 3, p. 791 | DOI:10.1017/s0143385707000491
Cité par 5 documents. Sources : Crossref, zbMATH
Commentaires - Politique