We outline our results in [11] concerning some sharp Sobolev inequalities on Riemannian manifolds. Our inequalities emphasize the role of scalar curvature in this context.
On présente des inégalités de Sobolev optimales sur les variétés riemanniennes. Ces inégalités contiennent un terme de courbure scalaire. Les démonstrations détaillées sont contenues dans [11].
Accepted:
Published online:
Yan Yan Li 1; Tonia Ricciardi 2
@article{CRMATH_2002__335_6_519_0, author = {Yan Yan Li and Tonia Ricciardi}, title = {A sharp {Sobolev} inequality on {Riemannian} manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {519--524}, publisher = {Elsevier}, volume = {335}, number = {6}, year = {2002}, doi = {10.1016/S1631-073X(02)02529-3}, language = {en}, }
Yan Yan Li; Tonia Ricciardi. A sharp Sobolev inequality on Riemannian manifolds. Comptes Rendus. Mathématique, Volume 335 (2002) no. 6, pp. 519-524. doi : 10.1016/S1631-073X(02)02529-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02529-3/
[1] Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geom., Volume 11 (1976), pp. 573-598
[2] Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl., Volume 55 (1976), pp. 269-296
[3] Some Nonlinear Problems in Riemannian Geometry, Springer-Verlag, New York, 1998
[4] The scalar-curvature problem on standard three-dimensional sphere, J. Funct. Anal., Volume 95 (1991), pp. 106-172
[5] Sobolev inequalities with remainder terms, J. Funct. Anal., Volume 62 (1985), pp. 73-86
[6] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., Volume 36 (1983), pp. 437-477
[7] On the minimization of symmetric functionals, Rev. Math. Phys. (1994), pp. 1011-1032 (Special Issue)
[8] Sharp Sobolev inequalities with lower order remainder terms, Trans. Amer. Math. Soc., Volume 353 (2001), pp. 269-289
[9] Sharp constant in a Sobolev trace inequality, Indiana Univ. Math. J., Volume 37 (1988), pp. 687-698
[10] Meilleures constantes dans le théorème d'inclusion de Sobolev, Ann. Inst. H. Poincaré, Volume 13 (1996) no. 1, pp. 57-93
[11] Y.Y. Li, T. Ricciardi, A sharp Sobolev inequality on Riemannian manifolds, Preprint No. 3-2002, Dip. Mat. e Appl., Univ. of Naples Federico II
[12] Sharp Sobolev trace inequalities on Riemannian manifolds with boundaries, Comm. Pure Appl. Math., Volume 50 (1997), pp. 449-487
[13] Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom., Volume 20 (1984), pp. 479-495
[14] Critical points of embeddings of H1,n0 into Orlicz spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 5 (1988), pp. 425-464
[15] Best constant in Sobolev inequality, Ann. Mat. Pura Appl., Volume 110 (1976), pp. 353-372
Cited by Sources:
Comments - Politique