[Un résultat de génération pour des équations cinétiques soumises à des conditions frontières non contractives]
In this Note, we present some c0-semigroup generation results in Lp-spaces for the advection operator submitted to non-contractive boundary conditions covering in particular the classical Maxwell-type boundary conditions.
Dans cette Note, on présente quelques résultats de génération de c0-semigroupe dans les espaces Lp pour l'opérateur d'advection soumis à des conditions aux limites non contractives, couvrant par exemple les conditions frontières de type Maxwell.
Accepté le :
Publié le :
Bertrand Lods 1
@article{CRMATH_2002__335_7_655_0, author = {Bertrand Lods}, title = {A generation theorem for kinetic equations with non-contractive boundary operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {655--660}, publisher = {Elsevier}, volume = {335}, number = {7}, year = {2002}, doi = {10.1016/S1631-073X(02)02533-5}, language = {en}, }
Bertrand Lods. A generation theorem for kinetic equations with non-contractive boundary operators. Comptes Rendus. Mathématique, Volume 335 (2002) no. 7, pp. 655-660. doi : 10.1016/S1631-073X(02)02533-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02533-5/
[1] Positive one parameter semigroups on ordered spaces, Acta Appl. Math., Volume 1 (1984), pp. 221-296
[2] Le transport neutronique avec des conditions aux limites générales, C. R. Acad. Sci. Paris, Série I, Volume 329 (1999), pp. 121-124
[3] Streaming operators and semigroups, Meccanica, Volume 14 (1979), pp. 119-128
[4] The Boltzmann Equation and its Applications, Springer, 1987
[5] The Mathematical Theory of Dilute Gases, Springer-Verlag, 1994
[6] Boundary Value Problems in Abstract Kinetic Theory, Birkhäuser, Basel, 1987
[7] Spectral analysis and generation results for streaming operators with multipliying boundary conditions, Positivity, Volume 3 (1999), pp. 273-296
[8] B. Lods, Théorie spectrale des équations cinétiques, Thèse, à paraı̂tre
[9] On the theory of a growing cell population with zero minimum cycle length, J. Math. Anal. Appl., Volume 266 (2001), pp. 70-99
[10] Time dependent kinetic equations with collision terms relatively bounded with respect to the collision frequency, Transport Theory Statist. Phys., Volume 30 (2001), pp. 63-90
[11] A model of prolifetaring cell population with inherited cycle length, J. Math. Biol., Volume 23 (1986), pp. 269-282
- Existence and BV-regularity for neutron transport equation in nonconvex domain, SIAM Journal on Mathematical Analysis, Volume 48 (2016) no. 5, pp. 3467-3495 | DOI:10.1137/16m1059035 | Zbl:1362.35203
- Some compactness and interpolation results for linear Boltzmann equation, Journal of Function Spaces, Volume 2015 (2015), p. 8 (Id/No 370294) | DOI:10.1155/2015/370294 | Zbl:1323.47084
- Bibliography, Discovering Evolution Equations with Applications, Volume 20110641 (2011) | DOI:10.1201/b10955-12
- New results in abstract time-dependent transport equations, Transport Theory and Statistical Physics, Volume 40 (2011) no. 1-4, pp. 85-125 | DOI:10.1080/00411450.2011.603402 | Zbl:1241.82070
- New results for neutronic equations. II, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 348 (2010) no. 9-10, pp. 549-552 | DOI:10.1016/j.crma.2010.04.005 | Zbl:1198.35056
- On the spectrum of absorption operators with Maxwell boundary conditions arising in population dynamics and transport theory. A unified treatment, Transport Theory and Statistical Physics, Volume 37 (2008) no. 1, pp. 1-37 | DOI:10.1080/00411450802271684 | Zbl:1214.82136
- Stability of the essential spectrum for 2D-transport models with Maxwell boundary conditions, Mathematical Methods in the Applied Sciences, Volume 29 (2006) no. 5, pp. 499-523 | DOI:10.1002/mma.684 | Zbl:1092.35057
- Semigroup generation properties of streaming operators with noncontractive boundary conditions, Mathematical and Computer Modelling, Volume 42 (2005) no. 13, pp. 1441-1462 | DOI:10.1016/j.mcm.2004.12.007 | Zbl:1103.47033
Cité par 8 documents. Sources : Crossref, zbMATH
Commentaires - Politique