Comptes Rendus
A generation theorem for kinetic equations with non-contractive boundary operators
[Un résultat de génération pour des équations cinétiques soumises à des conditions frontières non contractives]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 7, pp. 655-660.

In this Note, we present some c0-semigroup generation results in Lp-spaces for the advection operator submitted to non-contractive boundary conditions covering in particular the classical Maxwell-type boundary conditions.

Dans cette Note, on présente quelques résultats de génération de c0-semigroupe dans les espaces Lp pour l'opérateur d'advection soumis à des conditions aux limites non contractives, couvrant par exemple les conditions frontières de type Maxwell.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02533-5

Bertrand Lods 1

1 Département de mathématiques, Université de Franche-Comté, 16, route de Gray, 25030 Besancon, France
@article{CRMATH_2002__335_7_655_0,
     author = {Bertrand Lods},
     title = {A generation theorem for kinetic equations with non-contractive boundary operators},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {655--660},
     publisher = {Elsevier},
     volume = {335},
     number = {7},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02533-5},
     language = {en},
}
TY  - JOUR
AU  - Bertrand Lods
TI  - A generation theorem for kinetic equations with non-contractive boundary operators
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 655
EP  - 660
VL  - 335
IS  - 7
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02533-5
LA  - en
ID  - CRMATH_2002__335_7_655_0
ER  - 
%0 Journal Article
%A Bertrand Lods
%T A generation theorem for kinetic equations with non-contractive boundary operators
%J Comptes Rendus. Mathématique
%D 2002
%P 655-660
%V 335
%N 7
%I Elsevier
%R 10.1016/S1631-073X(02)02533-5
%G en
%F CRMATH_2002__335_7_655_0
Bertrand Lods. A generation theorem for kinetic equations with non-contractive boundary operators. Comptes Rendus. Mathématique, Volume 335 (2002) no. 7, pp. 655-660. doi : 10.1016/S1631-073X(02)02533-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02533-5/

[1] J.K. Batty; D.W. Robinson Positive one parameter semigroups on ordered spaces, Acta Appl. Math., Volume 1 (1984), pp. 221-296

[2] M. Boulanouar Le transport neutronique avec des conditions aux limites générales, C. R. Acad. Sci. Paris, Série I, Volume 329 (1999), pp. 121-124

[3] G. Busoni; G. Frosali Streaming operators and semigroups, Meccanica, Volume 14 (1979), pp. 119-128

[4] C. Cercignani The Boltzmann Equation and its Applications, Springer, 1987

[5] C. Cercignani; R. Illner; M. Pulvirenti The Mathematical Theory of Dilute Gases, Springer-Verlag, 1994

[6] W. Greenberg; C. Van der Mee; V. Protopopescu Boundary Value Problems in Abstract Kinetic Theory, Birkhäuser, Basel, 1987

[7] K. Latrach; M. Mokhtar-Kharroubi Spectral analysis and generation results for streaming operators with multipliying boundary conditions, Positivity, Volume 3 (1999), pp. 273-296

[8] B. Lods, Théorie spectrale des équations cinétiques, Thèse, à paraı̂tre

[9] B. Lods; M. Mokhtar-Kharroubi On the theory of a growing cell population with zero minimum cycle length, J. Math. Anal. Appl., Volume 266 (2001), pp. 70-99

[10] C. Van Der Mee Time dependent kinetic equations with collision terms relatively bounded with respect to the collision frequency, Transport Theory Statist. Phys., Volume 30 (2001), pp. 63-90

[11] G.F. Webb A model of prolifetaring cell population with inherited cycle length, J. Math. Biol., Volume 23 (1986), pp. 269-282

  • Yan Guo; Xiongfeng Yang Existence and BV-regularity for neutron transport equation in nonconvex domain, SIAM Journal on Mathematical Analysis, Volume 48 (2016) no. 5, pp. 3467-3495 | DOI:10.1137/16m1059035 | Zbl:1362.35203
  • Nadjeh Redjel; Abdelkader Dehici Some compactness and interpolation results for linear Boltzmann equation, Journal of Function Spaces, Volume 2015 (2015), p. 8 (Id/No 370294) | DOI:10.1155/2015/370294 | Zbl:1323.47084
  • Bibliography, Discovering Evolution Equations with Applications, Volume 20110641 (2011) | DOI:10.1201/b10955-12
  • M. Boulanouar New results in abstract time-dependent transport equations, Transport Theory and Statistical Physics, Volume 40 (2011) no. 1-4, pp. 85-125 | DOI:10.1080/00411450.2011.603402 | Zbl:1241.82070
  • Mohamed Boulanouar New results for neutronic equations. II, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 348 (2010) no. 9-10, pp. 549-552 | DOI:10.1016/j.crma.2010.04.005 | Zbl:1198.35056
  • Bertrand Lods On the spectrum of absorption operators with Maxwell boundary conditions arising in population dynamics and transport theory. A unified treatment, Transport Theory and Statistical Physics, Volume 37 (2008) no. 1, pp. 1-37 | DOI:10.1080/00411450802271684 | Zbl:1214.82136
  • Bertrand Lods; Mohammed Sbihi Stability of the essential spectrum for 2D-transport models with Maxwell boundary conditions, Mathematical Methods in the Applied Sciences, Volume 29 (2006) no. 5, pp. 499-523 | DOI:10.1002/mma.684 | Zbl:1092.35057
  • B. Lods Semigroup generation properties of streaming operators with noncontractive boundary conditions, Mathematical and Computer Modelling, Volume 42 (2005) no. 13, pp. 1441-1462 | DOI:10.1016/j.mcm.2004.12.007 | Zbl:1103.47033

Cité par 8 documents. Sources : Crossref, zbMATH

Commentaires - Politique