[États de Gibbs de crystaux quantiques: unicité dans le cas d'une petite masse]
A model of interacting quantum particles performing one-dimensional anharmonic oscillations around their unstable equilibrium positions, which form the lattice
On considère un modèle de particules quantiques en intéraction effectuant des oscillations anharmoniques uni-dimensionelles autour de leur positions d'équilibre sur le réseau
Accepté le :
Publié le :
Sergio Albeverio 1, 2, 3 ; Yuri Kondratiev 4, 2, 5 ; Yuri Kozitsky 6 ; Michael Röckner 4, 2
@article{CRMATH_2002__335_8_693_0, author = {Sergio Albeverio and Yuri Kondratiev and Yuri Kozitsky and Michael R\"ockner}, title = {Gibbs states of a quantum crystal: uniqueness by small particle mass}, journal = {Comptes Rendus. Math\'ematique}, pages = {693--698}, publisher = {Elsevier}, volume = {335}, number = {8}, year = {2002}, doi = {10.1016/S1631-073X(02)02545-1}, language = {en}, }
TY - JOUR AU - Sergio Albeverio AU - Yuri Kondratiev AU - Yuri Kozitsky AU - Michael Röckner TI - Gibbs states of a quantum crystal: uniqueness by small particle mass JO - Comptes Rendus. Mathématique PY - 2002 SP - 693 EP - 698 VL - 335 IS - 8 PB - Elsevier DO - 10.1016/S1631-073X(02)02545-1 LA - en ID - CRMATH_2002__335_8_693_0 ER -
%0 Journal Article %A Sergio Albeverio %A Yuri Kondratiev %A Yuri Kozitsky %A Michael Röckner %T Gibbs states of a quantum crystal: uniqueness by small particle mass %J Comptes Rendus. Mathématique %D 2002 %P 693-698 %V 335 %N 8 %I Elsevier %R 10.1016/S1631-073X(02)02545-1 %G en %F CRMATH_2002__335_8_693_0
Sergio Albeverio; Yuri Kondratiev; Yuri Kozitsky; Michael Röckner. Gibbs states of a quantum crystal: uniqueness by small particle mass. Comptes Rendus. Mathématique, Volume 335 (2002) no. 8, pp. 693-698. doi : 10.1016/S1631-073X(02)02545-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02545-1/
[1] Uniqueness for Gibbs measures of quntum lattices for small mass regime, Ann. Inst. H. Poincaré, Probab. Statist., Volume 37 (2001) no. 1, pp. 43-69
[2] S. Albeverio, Yu. Kondratiev, Yu. Kozitsky, M. Röckner, Euclidean Gibbs states for quantum lattice systems, Preprint BiBoS, Bielefeld, 2001, to appear in Rev. Math. Phys
[3] Suppression of critical fluctuations by strong quantum effects in quantum lattice systems, Comm. Math. Phys., Volume 194 (1998), pp. 493-512
[4] S. Albeverio, Yu. Kondratiev, T. Pasurek, M. Röckner, A priori estimates and existence for Euclidean Gibbs measures, Preprint BiBoS Nr. 02-06-089, Bielefeld, 2002
[5] The quasiclassical limit for the Schrödinger operator and phase transitions in quantum statistical physics, Func. Anal. Appl., Volume 26 (1992) no. 2, pp. 61-64
[6] Gibbs Measures and Phase Transitions, De Gruyter, Berlin, 1988
[7] Statistical mechanics of unbounded spins, Comm. Math. Phys., Volume 50 (1976), pp. 195-218
[8] A quantum crystal model in the light-mass limit: Gibbs states, Rev. Math. Phys., Volume 12 (2000), pp. 981-1032
[9] Quantum effects in an n-component vector model for structural phase transitions, Phys. Rev. B, Volume 13 (1976), pp. 1123-1130
- Sergio's work in statistical mechanics: from quantum particles to geometric stochastic analysis, Quantum and stochastic mathematical physics. Sergio Albeverio, adventures of a mathematician, Verona, Italy, March 25–29, 2019, Cham: Springer, 2023, pp. 217-246 | DOI:10.1007/978-3-031-14031-0_10 | Zbl:1549.82006
- Phase transitions and quantum stabilization in quantum anharmonic crystals, Reviews in Mathematical Physics, Volume 20 (2008) no. 5, pp. 529-595 | DOI:10.1142/s0129055x08003353 | Zbl:1151.82014
- Gibbs state uniqueness for an anharmonic quantum crystal with a non-polynomial double-well potential, Journal of Statistical Mechanics: Theory and Experiment, Volume 2006 (2006) no. 9, p. 29 (Id/No p09002) | DOI:10.1088/1742-5468/2006/09/p09002 | Zbl:1456.82071
- Small mass implies uniqueness of Gibbs states of a quantum crystal, Communications in Mathematical Physics, Volume 241 (2003) no. 1, pp. 69-90 | DOI:10.1007/s00220-003-0923-4 | Zbl:1149.82307
- Quantum Stabilization in Anharmonic Crystals, Physical Review Letters, Volume 90 (2003) no. 17 | DOI:10.1103/physrevlett.90.170603
Cité par 5 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier