Comptes Rendus
Gibbs states of a quantum crystal: uniqueness by small particle mass
[États de Gibbs de crystaux quantiques: unicité dans le cas d'une petite masse]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 8, pp. 693-698.

On considère un modèle de particules quantiques en intéraction effectuant des oscillations anharmoniques uni-dimensionelles autour de leur positions d'équilibre sur le réseau d. Pour ce modèle, nous énonçons deux résultats décrivant ses propriétés d'équilibre. Le premier théorème affirme l'existence de m*>0 tel que pour toutes les valeurs de la masse m de la particule inférieures à m*, l'ensemble des mesures euclidiennes tempérées de Gibbs consiste en un seul élément, à toute température β−1. Cela résoud un problème qui est resté ouvert pour longtemps et améliore essentiellement un résultat analogue obtenu par les mêmes auteurs, lorsque m* dépendait de β de sorte que m*(β)0 si β→+∞. Le deuxième théorème dit que la fonction de corrélation a une décroissance exponentielle si m<m*.

A model of interacting quantum particles performing one-dimensional anharmonic oscillations around their unstable equilibrium positions, which form the lattice d, is considered. For this model, two statements describing its equilibrium properties are given. The first theorem states that there exists m*>0 such that for all values of the particle mass m<m*, the set of tempered Euclidean Gibbs measures consists of exactly one element at all values of the temperature β−1. This settles a problem that was open for a long time and is an essential improvement of a similar result proved before by the same authors [1] where the boundary m* depended on β in such a way that m*(β)0 for β→+∞. The second theorem states that the two-point correlation function has an exponential decay if m<m*.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02545-1

Sergio Albeverio 1, 2, 3 ; Yuri Kondratiev 4, 2, 5 ; Yuri Kozitsky 6 ; Michael Röckner 4, 2

1 Institut für Angewandte Mathematik, Universität Bonn, 53115 Bonn, Germany
2 Forschungszentrum BiBoS, Universität Bielefeld, 33615 Bielefeld, Germany
3 CERFIM, Locarno and USI, Switzerland
4 Fakultät für Mathematik, Universität Bielefeld, 33615 Bielefeld, Germany
5 Institute of Mathematics, Kiev, Ukraine
6 Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, 20-031 Lublin, Poland
@article{CRMATH_2002__335_8_693_0,
     author = {Sergio Albeverio and Yuri Kondratiev and Yuri Kozitsky and Michael R\"ockner},
     title = {Gibbs states of a quantum crystal: uniqueness by small particle mass},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {693--698},
     publisher = {Elsevier},
     volume = {335},
     number = {8},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02545-1},
     language = {en},
}
TY  - JOUR
AU  - Sergio Albeverio
AU  - Yuri Kondratiev
AU  - Yuri Kozitsky
AU  - Michael Röckner
TI  - Gibbs states of a quantum crystal: uniqueness by small particle mass
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 693
EP  - 698
VL  - 335
IS  - 8
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02545-1
LA  - en
ID  - CRMATH_2002__335_8_693_0
ER  - 
%0 Journal Article
%A Sergio Albeverio
%A Yuri Kondratiev
%A Yuri Kozitsky
%A Michael Röckner
%T Gibbs states of a quantum crystal: uniqueness by small particle mass
%J Comptes Rendus. Mathématique
%D 2002
%P 693-698
%V 335
%N 8
%I Elsevier
%R 10.1016/S1631-073X(02)02545-1
%G en
%F CRMATH_2002__335_8_693_0
Sergio Albeverio; Yuri Kondratiev; Yuri Kozitsky; Michael Röckner. Gibbs states of a quantum crystal: uniqueness by small particle mass. Comptes Rendus. Mathématique, Volume 335 (2002) no. 8, pp. 693-698. doi : 10.1016/S1631-073X(02)02545-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02545-1/

[1] S. Albeverio; Yu. Kondratiev; Yu. Kozitsky; M. Röckner Uniqueness for Gibbs measures of quntum lattices for small mass regime, Ann. Inst. H. Poincaré, Probab. Statist., Volume 37 (2001) no. 1, pp. 43-69

[2] S. Albeverio, Yu. Kondratiev, Yu. Kozitsky, M. Röckner, Euclidean Gibbs states for quantum lattice systems, Preprint BiBoS, Bielefeld, 2001, to appear in Rev. Math. Phys

[3] S. Albeverio; Yu. Kondratiev; Yu. Kozitsky Suppression of critical fluctuations by strong quantum effects in quantum lattice systems, Comm. Math. Phys., Volume 194 (1998), pp. 493-512

[4] S. Albeverio, Yu. Kondratiev, T. Pasurek, M. Röckner, A priori estimates and existence for Euclidean Gibbs measures, Preprint BiBoS Nr. 02-06-089, Bielefeld, 2002

[5] V.S. Barbulyak; Yu.G. Kondratiev The quasiclassical limit for the Schrödinger operator and phase transitions in quantum statistical physics, Func. Anal. Appl., Volume 26 (1992) no. 2, pp. 61-64

[6] H.-O. Georgii Gibbs Measures and Phase Transitions, De Gruyter, Berlin, 1988

[7] J.L. Lebowitz; E. Presutti Statistical mechanics of unbounded spins, Comm. Math. Phys., Volume 50 (1976), pp. 195-218

[8] R.A. Minlos; A. Verbeure; V.A. Zagrebnov A quantum crystal model in the light-mass limit: Gibbs states, Rev. Math. Phys., Volume 12 (2000), pp. 981-1032

[9] T. Schneider; H. Beck; E. Stoll Quantum effects in an n-component vector model for structural phase transitions, Phys. Rev. B, Volume 13 (1976), pp. 1123-1130

Cité par Sources :

Commentaires - Politique