Comptes Rendus
Partial Differential Equations
States of a one dimensional quantum crystal
[États d'équilibre d'un cristal quantique unidimensionnel]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 12, pp. 981-984.

Nous construisons des états d'équilibre sur une C algèbre associée à un cristal quantique unidimensionnel. Nous étudions la valeur moyenne d'une observable, non nécessairement bornée, telle que le coefficient de dilatation. Ceci demande, d'une part, une analyse précise du noyau de la chaleur associé au cristal et, d'autre part, l'étude des corrélations quantiques de deux observables associés a deux amas de particules.

We construct states on a C-algebra associated to a one dimensional lattice crystal. We also compute the mean value of an observable, not necessarily bounded, such as the dilation coefficient. This implies on one hand, a careful analysis of the heat kernel of the Hamiltonian associated to the crystal and, on the other hand, the study of the quantum correlations of two observables associated to two clusters of particules.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00229-2

Laurent Amour 1 ; Claudy Cancelier 1 ; Pierre Levy-Bruhl 1 ; Jean Nourrigat 1

1 Laboratoire de mathématiques, CNRS UMR 6056, Université de Reims, Moulin de la Housse, BP 1039 51687 Reims cedex 2, France
@article{CRMATH_2003__336_12_981_0,
     author = {Laurent Amour and Claudy Cancelier and Pierre Levy-Bruhl and Jean Nourrigat},
     title = {States of a one dimensional quantum crystal},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {981--984},
     publisher = {Elsevier},
     volume = {336},
     number = {12},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00229-2},
     language = {en},
}
TY  - JOUR
AU  - Laurent Amour
AU  - Claudy Cancelier
AU  - Pierre Levy-Bruhl
AU  - Jean Nourrigat
TI  - States of a one dimensional quantum crystal
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 981
EP  - 984
VL  - 336
IS  - 12
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00229-2
LA  - en
ID  - CRMATH_2003__336_12_981_0
ER  - 
%0 Journal Article
%A Laurent Amour
%A Claudy Cancelier
%A Pierre Levy-Bruhl
%A Jean Nourrigat
%T States of a one dimensional quantum crystal
%J Comptes Rendus. Mathématique
%D 2003
%P 981-984
%V 336
%N 12
%I Elsevier
%R 10.1016/S1631-073X(03)00229-2
%G en
%F CRMATH_2003__336_12_981_0
Laurent Amour; Claudy Cancelier; Pierre Levy-Bruhl; Jean Nourrigat. States of a one dimensional quantum crystal. Comptes Rendus. Mathématique, Volume 336 (2003) no. 12, pp. 981-984. doi : 10.1016/S1631-073X(03)00229-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00229-2/

[1] S. Albeverio; Y. Kondratiev; T. Pasurek; M. Röckner Euclidean Gibbs states of quantum crystals, Moscow Math. J., Volume 1 (2001) no. 3, pp. 307-313

[2] S. Albeverio; Y. Kondratiev; T. Pasurek; M. Röckner Gibbs states on loop lattices: existence and a priori estimates, C. R. Acad. Sci. Paris, Sér. I, Volume 333 (2001), pp. 1005-1009

[3] L. Amour, C. Cancelier, P. Levy-Bruhl, J. Nourrigat, The heat kernel for Hamiltonians on lattices crystals, Prépublication 03.01, Reims, 2003

[4] N. Ashcroft; D. Mermin Solid State Physics, Saunders College, Fort Worth, 1976

[5] B. Helffer, Semi-classical analysis for Schrödinger operators, Laplace integrals and transfer operators in large dimension: an introduction, Cours, Université de Paris-Sud, 1995

[6] B. Helffer Remarks on the decay of correlations and Witten Laplacians, Brascamp–Lieb inequalities and semi-classical limit, J. Funct. Anal., Volume 155 (1998) no. 2, pp. 571-586

[7] B. Helffer Remarks on the decay of correlations and Witten Laplacians, II. Analysis of the dependence of the interaction, Rev. Math. Phys., Volume 11 (1999) no. 3, pp. 321-336

[8] B. Helffer Remarks on the decay of correlations and Witten Laplacians, III. Applications to the logarithmic Sobolev inequalities, Ann. Inst. H. Poincaré Probab. Statist., Volume 35 (1999) no. 4, pp. 483-508

[9] B. Helffer; J. Sjöstrand Semiclassical expansions of the thermodynamic limit for a Schrödinger equation. I. The one well case, Méthodes semi-classiques, Astérique 210, 2, Soc. Math. France, Paris, 1992

[10] B. Helffer; J. Sjöstrand On the correlation for Kac like models in the convex case, J. Statist. Phys., Volume 74 (1994) no. 1,2, pp. 349-409

[11] C. Kittel Introduction to Solid State Physics, Wiley, New York, 1976

[12] R.A. Minlos; E.A. Pechersky; V.A. Zagrebnov Analyticity of the Gibbs states for a quantum anharmonic crystal: no order parameter, Ann. Inst. H. Poincaré, Volume 3 (2002), pp. 921-938

[13] R.A. Minlos; A. Verbeure; V.A. Zagrebnov A quantum crystal model in the light-mass limit: Gibbs states, Rev. Math. Phys., Volume 12 (2000) no. 7, pp. 981-1032

[14] Ch. Royer, Formes quadratiques et calcul pseudodifférentiel en grande dimension, Prépublication 00.05, Reims, 2000

[15] B. Simon The Statistical Mechanics of Lattice Gases, Princeton Ser. in Phys., I, Princeton University Press, Princeton, 1993

[16] J. Sjöstrand Evolution equations in a large number of variables, Math. Nachr., Volume 166 (1994), pp. 17-53

[17] J. Sjöstrand Complete asymptotics for correlations of Laplace integrals in the semiclassical limit, Mém. Soc. Math. France, Volume 83 (2000)

Cité par Sources :

Commentaires - Politique