Comptes Rendus
Gibbs states of a quantum crystal: uniqueness by small particle mass
Comptes Rendus. Mathématique, Volume 335 (2002) no. 8, pp. 693-698.

A model of interacting quantum particles performing one-dimensional anharmonic oscillations around their unstable equilibrium positions, which form the lattice d , is considered. For this model, two statements describing its equilibrium properties are given. The first theorem states that there exists m * >0 such that for all values of the particle mass m<m * , the set of tempered Euclidean Gibbs measures consists of exactly one element at all values of the temperature β−1. This settles a problem that was open for a long time and is an essential improvement of a similar result proved before by the same authors [1] where the boundary m * depended on β in such a way that m * (β)0 for β→+∞. The second theorem states that the two-point correlation function has an exponential decay if m<m * .

On considère un modèle de particules quantiques en intéraction effectuant des oscillations anharmoniques uni-dimensionelles autour de leur positions d'équilibre sur le réseau d . Pour ce modèle, nous énonçons deux résultats décrivant ses propriétés d'équilibre. Le premier théorème affirme l'existence de m * >0 tel que pour toutes les valeurs de la masse m de la particule inférieures à m * , l'ensemble des mesures euclidiennes tempérées de Gibbs consiste en un seul élément, à toute température β−1. Cela résoud un problème qui est resté ouvert pour longtemps et améliore essentiellement un résultat analogue obtenu par les mêmes auteurs, lorsque m * dépendait de β de sorte que m * (β)0 si β→+∞. Le deuxième théorème dit que la fonction de corrélation a une décroissance exponentielle si m<m * .

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-073X(02)02545-1

Sergio Albeverio 1, 2, 3; Yuri Kondratiev 4, 2, 5; Yuri Kozitsky 6; Michael Röckner 4, 2

1 Institut für Angewandte Mathematik, Universität Bonn, 53115 Bonn, Germany
2 Forschungszentrum BiBoS, Universität Bielefeld, 33615 Bielefeld, Germany
3 CERFIM, Locarno and USI, Switzerland
4 Fakultät für Mathematik, Universität Bielefeld, 33615 Bielefeld, Germany
5 Institute of Mathematics, Kiev, Ukraine
6 Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, 20-031 Lublin, Poland
@article{CRMATH_2002__335_8_693_0,
     author = {Sergio Albeverio and Yuri Kondratiev and Yuri Kozitsky and Michael R\"ockner},
     title = {Gibbs states of a quantum crystal: uniqueness by small particle mass},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {693--698},
     publisher = {Elsevier},
     volume = {335},
     number = {8},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02545-1},
     language = {en},
}
TY  - JOUR
AU  - Sergio Albeverio
AU  - Yuri Kondratiev
AU  - Yuri Kozitsky
AU  - Michael Röckner
TI  - Gibbs states of a quantum crystal: uniqueness by small particle mass
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 693
EP  - 698
VL  - 335
IS  - 8
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02545-1
LA  - en
ID  - CRMATH_2002__335_8_693_0
ER  - 
%0 Journal Article
%A Sergio Albeverio
%A Yuri Kondratiev
%A Yuri Kozitsky
%A Michael Röckner
%T Gibbs states of a quantum crystal: uniqueness by small particle mass
%J Comptes Rendus. Mathématique
%D 2002
%P 693-698
%V 335
%N 8
%I Elsevier
%R 10.1016/S1631-073X(02)02545-1
%G en
%F CRMATH_2002__335_8_693_0
Sergio Albeverio; Yuri Kondratiev; Yuri Kozitsky; Michael Röckner. Gibbs states of a quantum crystal: uniqueness by small particle mass. Comptes Rendus. Mathématique, Volume 335 (2002) no. 8, pp. 693-698. doi : 10.1016/S1631-073X(02)02545-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02545-1/

[1] S. Albeverio; Yu. Kondratiev; Yu. Kozitsky; M. Röckner Uniqueness for Gibbs measures of quntum lattices for small mass regime, Ann. Inst. H. Poincaré, Probab. Statist., Volume 37 (2001) no. 1, pp. 43-69

[2] S. Albeverio, Yu. Kondratiev, Yu. Kozitsky, M. Röckner, Euclidean Gibbs states for quantum lattice systems, Preprint BiBoS, Bielefeld, 2001, to appear in Rev. Math. Phys

[3] S. Albeverio; Yu. Kondratiev; Yu. Kozitsky Suppression of critical fluctuations by strong quantum effects in quantum lattice systems, Comm. Math. Phys., Volume 194 (1998), pp. 493-512

[4] S. Albeverio, Yu. Kondratiev, T. Pasurek, M. Röckner, A priori estimates and existence for Euclidean Gibbs measures, Preprint BiBoS Nr. 02-06-089, Bielefeld, 2002

[5] V.S. Barbulyak; Yu.G. Kondratiev The quasiclassical limit for the Schrödinger operator and phase transitions in quantum statistical physics, Func. Anal. Appl., Volume 26 (1992) no. 2, pp. 61-64

[6] H.-O. Georgii Gibbs Measures and Phase Transitions, De Gruyter, Berlin, 1988

[7] J.L. Lebowitz; E. Presutti Statistical mechanics of unbounded spins, Comm. Math. Phys., Volume 50 (1976), pp. 195-218

[8] R.A. Minlos; A. Verbeure; V.A. Zagrebnov A quantum crystal model in the light-mass limit: Gibbs states, Rev. Math. Phys., Volume 12 (2000), pp. 981-1032

[9] T. Schneider; H. Beck; E. Stoll Quantum effects in an n-component vector model for structural phase transitions, Phys. Rev. B, Volume 13 (1976), pp. 1123-1130

Cited by Sources:

Comments - Policy