[Résultats d'absolue continuité pour les superdiffusions et applications aux équations différentielles]
On établit un résultat qui, combiné à des travaux antérieurs de Dynkin, Kuznetsov et Mselati, conduit à une classification complète des solutions positives de l'équation Δu=uα dans un domaine borné régulier E, pour 1<α⩽2.
Let X=(XD,Pμ) be a superdiffusion in a domain . We introduce a germ σ-algebra at the boundary of E and we prove that, on this σ-algebra, Pμ1 is absolutely continuous with respect to Pμ2 if μ1 and μ2 are concentrated on compact subsets of E. In combination with previous results of Dynkin, Kuznetsov and Mselati, this leads to a complete classification of positive solutions of equation Δu=uα in a bounded domain E of class C4 for the case 1<α⩽2.
Accepté le :
Publié le :
Eugene B. Dynkin 1
@article{CRMATH_2004__338_8_605_0, author = {Eugene B. Dynkin}, title = {Absolute continuity results for superdiffusions with applications to differential equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {605--610}, publisher = {Elsevier}, volume = {338}, number = {8}, year = {2004}, doi = {10.1016/j.crma.2004.01.028}, language = {en}, }
Eugene B. Dynkin. Absolute continuity results for superdiffusions with applications to differential equations. Comptes Rendus. Mathématique, Volume 338 (2004) no. 8, pp. 605-610. doi : 10.1016/j.crma.2004.01.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.01.028/
[1] Measure-valued Markov processes, Lecture Notes in Math., vol. 1541, 1993, pp. 1-260 (École d'Été de Probabilités de Saint Flour, 1991)
[2] Branching particle systems and superprocesses, Ann. Probab., Volume 19 (1991), pp. 1157-1194
[3] Diffusions, Superdiffusions and Partial Differential Equations, American Mathematical Society, Providence, RI, 2002
[4] E.B. Dynkin, New relations between diffusions and superdiffusions and their applications to differential equations, Math. Res. Lett., in press
[5] E.B. Dynkin, On upper bounds for positive solutions of semilinear equations, J. Funct. Anal. (2003), in press
[6] Harmonic functions and exit boundary of superdiffusion, J. Funct. Anal., Volume 206 (2004), pp. 31-68
[7] Poisson capacities, Math. Res. Lett., Volume 10 (2003), pp. 85-95
[8] E.B. Dynkin, S.E. Kuznetsov, -measures for branching exit Markov systems and their applications to differential equations, Probab. Theory Related Fields, in press
[9] S.E. Kuznetsov, An upper bound for positive solutions of the equation Δu=uα, in preparation
[10] B. Mselati, Classification et représentation probabiliste des solutions positives de Δu=u2 dans un domaine, Thése de Doctorat de l'Université Paris 6, 2002
Cité par Sources :
Commentaires - Politique