Comptes Rendus
Besov spaces and Bergman projections on the ball
Comptes Rendus. Mathématique, Volume 335 (2002) no. 9, pp. 729-732.

A class of radial differential operators are investigated yielding a natural classification of diagonal Besov spaces on the unit ball of N . Precise conditions are given for the boundedness of Bergman projections from certain Lp spaces onto Besov spaces. Right inverses for these projections are also provided. Applications to complex interpolation are presented.

Nous étudions une class d'opérateurs différentiels radiaux conduisant à une classification naturelle des espaces de Besov diagonaux dans la boule unité de N . Nous donnons les conditions précises pour la bornitude des projections de Bergman de certains espaces Lp sur des espaces de Besov. Nous déterminons aussi des inverses à droite pour ces projections. Nous présentons des applications à l'interpolation complexe.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-073X(02)02556-6

H.Turgay Kaptanoğlu 1

1 Mathematics Department, Middle East Technical University, Ankara 06531, Turkey
@article{CRMATH_2002__335_9_729_0,
     author = {H.Turgay Kaptano\u{g}lu},
     title = {Besov spaces and {Bergman} projections on the ball},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {729--732},
     publisher = {Elsevier},
     volume = {335},
     number = {9},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02556-6},
     language = {en},
}
TY  - JOUR
AU  - H.Turgay Kaptanoğlu
TI  - Besov spaces and Bergman projections on the ball
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 729
EP  - 732
VL  - 335
IS  - 9
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02556-6
LA  - en
ID  - CRMATH_2002__335_9_729_0
ER  - 
%0 Journal Article
%A H.Turgay Kaptanoğlu
%T Besov spaces and Bergman projections on the ball
%J Comptes Rendus. Mathématique
%D 2002
%P 729-732
%V 335
%N 9
%I Elsevier
%R 10.1016/S1631-073X(02)02556-6
%G en
%F CRMATH_2002__335_9_729_0
H.Turgay Kaptanoğlu. Besov spaces and Bergman projections on the ball. Comptes Rendus. Mathématique, Volume 335 (2002) no. 9, pp. 729-732. doi : 10.1016/S1631-073X(02)02556-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02556-6/

[1] J. Agler; J.E. McCarthy Complete Nevanlinna–Pick kernels, J. Funct. Anal., Volume 175 (2000), pp. 111-124

[2] D. Alpay; H.T. Kaptanoğlu Integral formulas for a sub-Hardy Hilbert space on the ball with complete Nevanlinna–Pick reproducing kernel, C. R. Acad. Sci. Paris, Série I, Volume 333 (2001), pp. 285-290

[3] D. Alpay; H.T. Kaptanoğlu Some-finite dimensional backward-shift-invariant subspaces in the ball and a related interpolation problem, Integral Equations Operator Theory, Volume 42 (2002), pp. 1-21

[4] D. Alpay, H.T. Kaptanoğlu, Gleason's problem and homogeneous interpolation in Hardy and Dirichlet-type spaces of the ball, J. Math. Anal. Appl., 2002, to appear

[5] J. Arazy Boundedness and compactness of generalized Hankel operators on bounded symmetric domains, J. Funct. Anal., Volume 137 (1996), pp. 97-151

[6] J. Arazy; S.D. Fisher; S. Janson; J. Peetre Membership of Hankel operators on the ball in unitary ideals, J. London Math. Soc., Volume 43 (1991), pp. 485-508

[7] J. Arazy; H. Upmeier Invariant inner product in spaces of holomorphic functions on bounded symmetric domains, Doc. Math., Volume 2 (1997), pp. 213-261

[8] J.A. Ball; T. Trent; V. Vinnikov Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces, Oper. Theory Adv. Appl., 122, Birkhäuser, Basel, 2001, pp. 89-138

[9] F. Beatrous; J. Burbea Holomorphic Sobolev spaces on the ball, Dissertationes Math., Volume 276 (1989)

[10] K.T. Hahn; E.H. Youssfi Möbius invariant Besov p-spaces and Hankel operators in the Bergman space on the ball in n , Complex Variables Theory Appl., Volume 17 (1991), pp. 89-104

[11] M.M. Peloso Möbius invariant spaces on the unit ball, Michigan Math. J., Volume 39 (1992), pp. 509-536

[12] K.E. Shaw Tangential limits and exceptional sets for holomorphic Besov functions in the unit ball of n , Illinois J. Math., Volume 37 (1993), pp. 171-185

[13] Z. Yan Invariant differential operators and holomorphic function spaces, J. Lie Theory, Volume 10 (2000), pp. 1-31

[14] K. Zhu Operator Theory in Function Spaces, Dekker, New York, 1990

[15] K. Zhu Holomorphic Besov spaces on bounded symmetric domains, I, Quart. J. Math. Oxford, Volume 46 (1995), pp. 239-256

[16] K. Zhu Holomorphic Besov spaces on bounded symmetric domains, II, Indiana Univ. Math. J., Volume 44 (1995), pp. 1017-1031

Cited by Sources:

Comments - Policy