[Extensions finies et ombres unipotentes des groupes affines cristallographiques]
Soit Γ un groupe virtuellement polycyclique tel que le sous-groupe de Fitting soit sans torsion et contienne son centralisateur. Nous montrons qu'une extension effective de Γ par un groupe fini μ est isomorphe à un groupe affine cristallographique si et seulement si μ laisse fixe un point dans l'espace des déformations des actions affines cristallographiques de Γ. Nous associons à Γ un groupe nilpotent sans torsion et de type fini Θ que nous appelons l'ombre unipotente de Γ. Ensuite nous relions l'espace des déformations de Γ à l'espace des déformations de Θ. Comme application nous montrons que Γ est isomorphe à un groupe affine cristallographique si, par exemple, Θ est de classe de nilpotence ⩽3, ou si le rang polycyclique de Γ est ⩽5, ainsi que dans certains autres cas.
Let Γ be a virtually polycyclic group so that the Fitting subgroup is torsion-free and contains its centralizer. We prove that an effective extension of Γ by a finite group μ is isomorphic to an affine crystallographic group if and only if there exists a fixed point for the action of μ on the deformation space of affine crystallographic actions of Γ. We associate to Γ a finitely generated torsion-free nilpotent group Θ which is called the unipotent shadow of Γ, and we relate the deformation space of Γ to the deformation space of Θ. As an application, we show that Γ is isomorphic to an affine crystallographic group if, e.g., Θ has nilpotency class ⩽3, or if the polycylic rank of Γ is ⩽5, and also in some other cases.
Accepté le :
Publié le :
Oliver Baues 1
@article{CRMATH_2002__335_10_785_0, author = {Oliver Baues}, title = {Finite extensions and unipotent shadows of affine crystallographic groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {785--788}, publisher = {Elsevier}, volume = {335}, number = {10}, year = {2002}, doi = {10.1016/S1631-073X(02)02562-1}, language = {en}, }
Oliver Baues. Finite extensions and unipotent shadows of affine crystallographic groups. Comptes Rendus. Mathématique, Volume 335 (2002) no. 10, pp. 785-788. doi : 10.1016/S1631-073X(02)02562-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02562-1/
[1] Simply transitive groups of affine motions, Amer. J. Math, Volume 99 (1977) no. 4, pp. 809-826
[2] Gluing affine two-manifolds with polygons, Geom. Dedicata, Volume 75 (1999) no. 1, pp. 33-56
[3] Une nilvariété non affine, J. Differential Geom, Volume 41 (1995), pp. 21-52
[4] Über die Bewegungsgruppen der Euklidischen Räume I, Math. Ann, Volume 72 (1912), pp. 400-412
[5] Zur Theorie der Bewegungsgruppen, Comment. Math. Helv, Volume 6 (1934), pp. 159-184
[6] Three-dimensional affine crystallographic groups, Adv. in Math, Volume 47 (1983) no. 1, pp. 1-49
[7] On affine crystallographic groups, J. Differential Geom, Volume 40 (1994) no. 3, pp. 563-594
[8] Aspherical manifolds with virtually 3-step nilpotent fundamental group, Amer. J. Math, Volume 105 (1983) no. 6, pp. 1435-1453
[9] Representative functions on discrete groups and solvable arithmetic subgroups, Amer. J. Math, Volume 92 (1970), pp. 1-32
[10] Discrete Subgroups of Lie Groups, Ergeb. Math. Grenzgeb, 68, Springer-Verlag, 1972
[11] Examples of compact locally affine spaces, Bull. Amer. Math. Soc, Volume 77 (1971), pp. 589-592
[12] Affine structures on three-step nilpotent Lie algebras, Proc. Amer. Math. Soc, Volume 46 (1974), pp. 451-454
[13] Über einen Algorithmus zur Bestimmung der Raumgruppen, Comment. Math. Helv, Volume 21 (1948), pp. 117-141
Cité par Sources :
Commentaires - Politique