[Spectral triples in Arakelov geometry]
In this Note, we use Connes' theory of spectral triples to provide a connection between Manin's model of the dual graph of the fiber at infinity of an Arakelov surface and the cohomology of the mapping cone of the local monodromy.
Dans cette Note nous employons la théorie des triplets spectraux de Connes pour rapprocher le modèle de Manin du graphe dual de la fibre à l'infini d'une surface d'Arakelov et la cohomologie du cône de la monodromie locale.
Revised:
Published online:
Caterina Consani 1; Matilde Marcolli 2
@article{CRMATH_2002__335_10_779_0, author = {Caterina Consani and Matilde Marcolli}, title = {Triplets spectraux en g\'eom\'etrie {d'Arakelov}}, journal = {Comptes Rendus. Math\'ematique}, pages = {779--784}, publisher = {Elsevier}, volume = {335}, number = {10}, year = {2002}, doi = {10.1016/S1631-073X(02)02569-4}, language = {fr}, }
Caterina Consani; Matilde Marcolli. Triplets spectraux en géométrie d'Arakelov. Comptes Rendus. Mathématique, Volume 335 (2002) no. 10, pp. 779-784. doi : 10.1016/S1631-073X(02)02569-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02569-4/
[1] Hausdorff dimension of quasi-circles, Publ. Math. IHES, Volume 50 (1979), pp. 11-25
[2] Orbit equivalence, flow equivalence, and ordered cohomology, Israel J. Math, Volume 95 (1996), pp. 169-210
[3] Geometry from the spectral point of view, Lett. Math. Phys, Volume 34 (1995) no. 3, pp. 203-238
[4] Double complexes and Euler L-factors, Compositio Math, Volume 111 (1998), pp. 323-358
[5] Non-commutative geometry, dynamics, and ∞-adic Arakelov geometry MPIM preprint (13) 2002 | arXiv
[6] A class of -algebras and topological Markov chains, Invent. Math, Volume 56 (1980), pp. 251-268
[7] On the Γ-factors attached to motives, Invent. Math, Volume 104 (1991), pp. 245-261
[8] Three-dimensional hyperbolic geometry as ∞-adic Arakelov geometry, Invent. Math, Volume 104 (1991), pp. 223-244
[9] Classification problems in ergodic theory, London Math. Soc. Lecture Note Ser, 67, 1982
[10] -algebras from Smale spaces, Canadian J. Math, Volume 48 (1996) no. 1, pp. 175-195
[11] Modules de Hodge polarisable, Publ. Res. Inst. Math. Sci, Volume 24 (1988), pp. 849-995
[12] Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures), Sém. Delange–Pisot–Poitou, Volume 19 (1969/70)
[13] Differential Analysis on Complex Manifolds, Springer-Verlag, 1980
Cited by Sources:
Comments - Policy