Comptes Rendus
Condition inf-sup pour l'élément fini de Taylor–Hood P2-iso-P1, 3-D ; application aux équations de Maxwell
Comptes Rendus. Mathématique, Volume 335 (2002) no. 10, pp. 827-832.

On considère la discrétisation des équations de Maxwell, telle qu'elle a été proposée dans [3,2,1]. Les approximations numériques du champ électromagnétique et du multiplicateur de Lagrange associé à la divergence du champ sont réalisées à l'aide de l'élément fini de Taylor–Hood P2-iso-P1, et complétées de fonctions-test singulières, lorsque le domaine de calcul est non convexe, à bord non régulier. Le but de la Note est de prouver l'existence d'une condition inf-sup discrète. On peut également appliquer ce résultat à la discrétisation du système de Stokes en vitesse-pression [7].

We consider the discretization of Maxwell equations, proposed in [3,2,1]. The electromagnetic field and the Lagrange multiplier related to its divergence are approximated numerically by the P2-iso-P1 Taylor–Hood Finite Element. Singular test-functions are added when the domain is non-convex, with a non-smooth boundary. The aim of this Note is to establish a discrete inf-sup condition. The result can be applied to the discretization of the velocity-pressure Stokes system [7].

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02564-5

Patrick Ciarlet 1 ; Vivette Girault 2

1 ENSTA/UMA, 32 boulevard Victor, 75739 Paris cedex 15, France
2 Laboratoire Jacques-Louis Lions, Université P. & M. Curie, 75252 Paris cedex 05, France
@article{CRMATH_2002__335_10_827_0,
     author = {Patrick Ciarlet and Vivette Girault},
     title = {Condition \protect\emph{inf-sup} pour l'\'el\'ement fini de {Taylor{\textendash}Hood} {<strong>\protect\emph{P}\protect\textsubscript{2}</strong>-iso-<strong>\protect\emph{P}\protect\textsubscript{1}</strong>,} {3-D} ; application aux \'equations de {Maxwell}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {827--832},
     publisher = {Elsevier},
     volume = {335},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02564-5},
     language = {fr},
}
TY  - JOUR
AU  - Patrick Ciarlet
AU  - Vivette Girault
TI  - Condition inf-sup pour l'élément fini de Taylor–Hood P2-iso-P1, 3-D ; application aux équations de Maxwell
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 827
EP  - 832
VL  - 335
IS  - 10
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02564-5
LA  - fr
ID  - CRMATH_2002__335_10_827_0
ER  - 
%0 Journal Article
%A Patrick Ciarlet
%A Vivette Girault
%T Condition inf-sup pour l'élément fini de Taylor–Hood P2-iso-P1, 3-D ; application aux équations de Maxwell
%J Comptes Rendus. Mathématique
%D 2002
%P 827-832
%V 335
%N 10
%I Elsevier
%R 10.1016/S1631-073X(02)02564-5
%G fr
%F CRMATH_2002__335_10_827_0
Patrick Ciarlet; Vivette Girault. Condition inf-sup pour l'élément fini de Taylor–Hood P2-iso-P1, 3-D ; application aux équations de Maxwell. Comptes Rendus. Mathématique, Volume 335 (2002) no. 10, pp. 827-832. doi : 10.1016/S1631-073X(02)02564-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02564-5/

[1] F. Assous; P. Ciarlet; E. Garcia Résolution des équations de Maxwell instationnaires avec charge dans un domaine singulier bidimensionnel, C. R. Acad. Sci. Paris, Série I, Volume 330 (2000), pp. 391-396

[2] F. Assous; P. Ciarlet; E. Sonnendrücker Resolution of the Maxwell equations in a domain with reentrant corners, Math. Mod. Num. Anal, Volume 32 (1998), pp. 359-389

[3] F. Assous; P. Degond; E. Heintzé; P.-A. Raviart; J. Segré On a finite-element method for solving the three-dimensional Maxwell equations, J. Comput. Phys, Volume 109 (1993), pp. 222-237

[4] F. Brezzi; M. Fortin Mixed and Hybrid Finite Element Methods, Springer, New York, 1991

[5] P.G. Ciarlet Basic error estimates for elliptic problems (P.G. Ciarlet; J.-L. Lions, eds.), Handbook of Numerical Analysis, II, North-Holland, 1991, pp. 17-351

[6] M. Costabel A coercive bilinear form for Maxwell's equations, J. Math. Anal. Appl, Volume 157 (1991), pp. 527-541

[7] V. Girault; P.-A. Raviart Finite Element Methods for Navier–Stokes Equations, Springer Series in Computational Mathematics, Springer, Berlin, 1986

[8] V. Girault, L.R. Scott, A quasi-local interpolation operator preserving the discrete divergence, soumis à Calcolo

[9] L.R. Scott; S. Zhang Finite element interpolation of non-smooth functions satisfying boundary conditions, Math. Comput, Volume 54 (1990), pp. 483-493

[10] R. Verfürth Error estimate for a mixed finite element approximation of the Stokes problem, RAIRO Anal. Numér, Volume 18 (1984), pp. 175-182

[11] C. Weber A local compactness theorem for Maxwell's equations, Math. Meth. Appl. Sci, Volume 2 (1980), pp. 12-25

  • Huo-Yuan Duan; Roger C. E. Tan; Suh-Yuh Yang; Cheng-Shu You A mixed H1-conforming finite element method for solving Maxwell's equations with non-H1 solution, SIAM Journal on Scientific Computing, Volume 40 (2018) no. 1, p. a224-a250 | DOI:10.1137/16m1078082 | Zbl:1383.78037
  • V. Girault; R. H. Nochetto; L. R. Scott Max-norm estimates for Stokes and Navier-Stokes approximations in convex polyhedra, Numerische Mathematik, Volume 131 (2015) no. 4, pp. 771-822 | DOI:10.1007/s00211-015-0707-8 | Zbl:1401.76087
  • Olivier Jamond; Hachmi Ben Dhia Incompressibility in the multimodel Arlequin framework, International Journal for Numerical Methods in Engineering, Volume 94 (2013) no. 4, pp. 374-399 | DOI:10.1002/nme.4454 | Zbl:1352.74367
  • Yidu Yang; Yu Zhang; Hai Bi Multigrid discretization and iterative algorithm for mixed variational formulation of the eigenvalue problem of electric field, Abstract and Applied Analysis, Volume 2012 (2012), p. 25 (Id/No 190768) | DOI:10.1155/2012/190768 | Zbl:1256.78001
  • Yidu Yang; Wei Jiang; Yu Zhang; Wenjun Wang; Hai Bi A two-scale discretization scheme for mixed variational formulation of eigenvalue problems, Abstract and Applied Analysis, Volume 2012 (2012), p. 29 (Id/No 812914) | DOI:10.1155/2012/812914 | Zbl:1246.65220
  • Jianguo Huang; Shangyou Zhang A divergence-free finite element method for a type of 3D Maxwell equations, Applied Numerical Mathematics, Volume 62 (2012) no. 6, pp. 802-813 | DOI:10.1016/j.apnum.2011.06.009 | Zbl:1241.78043
  • F. Assous; M. Michaeli Solving Maxwell's equations in singular domains with a Nitsche type method, Journal of Computational Physics, Volume 230 (2011) no. 12, pp. 4922-4939 | DOI:10.1016/j.jcp.2011.03.013 | Zbl:1220.78009
  • Franck Assous; J. Segré; E. Sonnendrücker A domain decomposition method for the parallelization of a three-dimensional Maxwell solver based on a constrained formulation, Mathematics and Computers in Simulation, Volume 81 (2011) no. 11, pp. 2371-2388 | DOI:10.1016/j.matcom.2011.03.001 | Zbl:1230.78035
  • PATRICK CIARLET; SIMON LABRUNIE NUMERICAL ANALYSIS OF THE GENERALIZED MAXWELL EQUATIONS (WITH AN ELLIPTIC CORRECTION) FOR CHARGED PARTICLE SIMULATIONS, Mathematical Models and Methods in Applied Sciences, Volume 19 (2009) no. 11, p. 1959 | DOI:10.1142/s0218202509004017
  • Annalisa Buffa; Patrick jun. Ciarlet; Erell Jamelot Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements, Numerische Mathematik, Volume 113 (2009) no. 4, pp. 497-518 | DOI:10.1007/s00211-009-0246-2 | Zbl:1180.78048
  • Patrick jun. Ciarlet; Grace Hechme Computing electromagnetic eigenmodes with continuous Galerkin approximations, Computer Methods in Applied Mechanics and Engineering, Volume 198 (2008) no. 2, pp. 358-365 | DOI:10.1016/j.cma.2008.08.005 | Zbl:1194.78053
  • Franck Assous; Patrick Ciarlet Numerical Solution to Maxwell’s Equations in Singular Waveguides, Computational Science – ICCS 2007, Volume 4490 (2007), p. 235 | DOI:10.1007/978-3-540-72590-9_34
  • David Kay; Richard Welford Efficient Numerical Solution of Cahn–Hilliard–Navier–Stokes Fluids in 2D, SIAM Journal on Scientific Computing, Volume 29 (2007) no. 6, p. 2241 | DOI:10.1137/050648110
  • F. Assous; P. jun. Ciarlet; E. Garcia; J. Segré Time-dependent Maxwell's equations with charges in singular geometries, Computer Methods in Applied Mechanics and Engineering, Volume 196 (2006) no. 1-3, pp. 665-681 | DOI:10.1016/j.cma.2006.07.007 | Zbl:1121.78305
  • Patrick jun. Ciarlet Augmented formulations for solving Maxwell equations, Computer Methods in Applied Mechanics and Engineering, Volume 194 (2005) no. 2-5, pp. 559-586 | DOI:10.1016/j.cma.2004.05.021 | Zbl:1063.78018
  • V. Girault; R. H. Nochetto; R. Scott Maximum-norm stability of the finite element Stokes projection, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 84 (2005) no. 3, pp. 279-330 | DOI:10.1016/j.matpur.2004.09.017 | Zbl:1210.76051
  • F. Assous; P. jun. Ciarlet; S. Labrunie; J. Segré Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: The singular complement method., Journal of Computational Physics, Volume 191 (2003) no. 1, pp. 147-176 | DOI:10.1016/s0021-9991(03)00309-7 | Zbl:1033.65086

Cité par 17 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: