Dans cette Note nous employons la théorie des triplets spectraux de Connes pour rapprocher le modèle de Manin du graphe dual de la fibre à l'infini d'une surface d'Arakelov et la cohomologie du cône de la monodromie locale.
In this Note, we use Connes' theory of spectral triples to provide a connection between Manin's model of the dual graph of the fiber at infinity of an Arakelov surface and the cohomology of the mapping cone of the local monodromy.
Révisé le :
Publié le :
Caterina Consani 1 ; Matilde Marcolli 2
@article{CRMATH_2002__335_10_779_0, author = {Caterina Consani and Matilde Marcolli}, title = {Triplets spectraux en g\'eom\'etrie {d'Arakelov}}, journal = {Comptes Rendus. Math\'ematique}, pages = {779--784}, publisher = {Elsevier}, volume = {335}, number = {10}, year = {2002}, doi = {10.1016/S1631-073X(02)02569-4}, language = {fr}, }
Caterina Consani; Matilde Marcolli. Triplets spectraux en géométrie d'Arakelov. Comptes Rendus. Mathématique, Volume 335 (2002) no. 10, pp. 779-784. doi : 10.1016/S1631-073X(02)02569-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02569-4/
[1] Hausdorff dimension of quasi-circles, Publ. Math. IHES, Volume 50 (1979), pp. 11-25
[2] Orbit equivalence, flow equivalence, and ordered cohomology, Israel J. Math, Volume 95 (1996), pp. 169-210
[3] Geometry from the spectral point of view, Lett. Math. Phys, Volume 34 (1995) no. 3, pp. 203-238
[4] Double complexes and Euler L-factors, Compositio Math, Volume 111 (1998), pp. 323-358
[5] Non-commutative geometry, dynamics, and ∞-adic Arakelov geometry MPIM preprint (13) 2002 | arXiv
[6] A class of -algebras and topological Markov chains, Invent. Math, Volume 56 (1980), pp. 251-268
[7] On the Γ-factors attached to motives, Invent. Math, Volume 104 (1991), pp. 245-261
[8] Three-dimensional hyperbolic geometry as ∞-adic Arakelov geometry, Invent. Math, Volume 104 (1991), pp. 223-244
[9] Classification problems in ergodic theory, London Math. Soc. Lecture Note Ser, 67, 1982
[10] -algebras from Smale spaces, Canadian J. Math, Volume 48 (1996) no. 1, pp. 175-195
[11] Modules de Hodge polarisable, Publ. Res. Inst. Math. Sci, Volume 24 (1988), pp. 849-995
[12] Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures), Sém. Delange–Pisot–Poitou, Volume 19 (1969/70)
[13] Differential Analysis on Complex Manifolds, Springer-Verlag, 1980
Cité par Sources :
Commentaires - Politique