[Paquets d'ondelettes avec localisation temps-fréquentielle uniforme]
Nous construisons des paquets d'ondelettes de base uniformément bien localisés en temps et en fréquences. Les bases orthonormées correspondantes de paquets d'ondelettes sons parametrisées par des partitions dyadiques obeissants une condition de variation locale.
We construct basic wavelet packets with uniformly bounded localization in both time and frequency. The corresponding orthonormal bases of wavelet packets are parametrized by dyadic segmentations obeying a local variation condition.
Accepté le :
Publié le :
Lars F. Villemoes 1
@article{CRMATH_2002__335_10_793_0, author = {Lars F. Villemoes}, title = {Wavelet packets with uniform time-frequency localization}, journal = {Comptes Rendus. Math\'ematique}, pages = {793--796}, publisher = {Elsevier}, volume = {335}, number = {10}, year = {2002}, doi = {10.1016/S1631-073X(02)02570-0}, language = {en}, }
Lars F. Villemoes. Wavelet packets with uniform time-frequency localization. Comptes Rendus. Mathématique, Volume 335 (2002) no. 10, pp. 793-796. doi : 10.1016/S1631-073X(02)02570-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02570-0/
[1] L. Borup, M. Nielsen, Approximation with brushlet systems, J. Approx. Theory, to appear
[2] Time-frequency localization with non-stationary wavelet packets (M.T. Smith; A. Akansu, eds.), Subband and Wavelet Transforms — Theory and Design, Kluwer Academic, 1996, pp. 189-211
[3] Size properties of wavelet-packets, Wavelets and Their Applications, Jones and Bartlett, Boston, MA, 1992, pp. 453-470
[4] A simple Wilson orthonormal basis with exponential decay, SIAM J. Math. Anal, Volume 22 (1991), pp. 554-573
[5] Wavelets in wandering subspaces, Trans. Amer. Math. Soc, Volume 338 (1993), pp. 639-654
[6] Control of frequency spreading of wavelet packets, Appl. Comput. Harmon. Anal, Volume 1 (1994) no. 2, pp. 157-168
[7] Une base orthonormale de
[8] Wavelets: Algorithms and Applications, SIAM, 1993
[9] Brushlets: a tool for directional image analysis and image compression, Appl. Comput. Harmon. Anal, Volume 4 (1997), pp. 147-187
[10] Mean size of wavelet packets, Appl. Comput. Harmon. Anal, Volume 13 (2002), pp. 22-34
[11] Localisation fréquentielle des paquets d'ondelettes, Rev. Mat. Iberoamericana, Volume 11 (1995) no. 2, pp. 334-354
[12] Adapted bases of time-frequency local cosines, Appl. Comput. Harmon. Anal, Volume 10 (2001), pp. 139-162
- RETRACTED ARTICLE: De-noising of EEG signals with shift-based cycle spinning on wave atoms, Soft Computing, Volume 26 (2022) no. 7, p. 3237 | DOI:10.1007/s00500-021-06708-y
- Reference variance and adjustment factor based wave atoms image speckle reduction method for optical coherence tomography images, Optik, Volume 224 (2020), p. 165651 | DOI:10.1016/j.ijleo.2020.165651
- Wave atoms for digital hologram compression, Applied Optics, Volume 58 (2019) no. 22, p. 6193 | DOI:10.1364/ao.58.006193
- Waveatom transform-based multimodal medical image fusion, Signal, Image and Video Processing, Volume 13 (2019) no. 2, p. 321 | DOI:10.1007/s11760-018-1360-3
- Texture-preserving deconvolution via image decomposition, Signal, Image and Video Processing, Volume 11 (2017) no. 7, p. 1189 | DOI:10.1007/s11760-017-1074-y
- Joint enhancement-compression of handwritten document images through DjVu encoder, Journal of Visual Communication and Image Representation, Volume 41 (2016), p. 324 | DOI:10.1016/j.jvcir.2016.10.012
- Wave atoms based compression method for fingerprint images, Pattern Recognition, Volume 46 (2013) no. 9, p. 2450 | DOI:10.1016/j.patcog.2013.02.004
- Fusion of wave atom-based Wiener shrinkage filter and joint non-local means filter for texture-preserving image deconvolution, Optical Engineering, Volume 51 (2012) no. 6, p. 067009 | DOI:10.1117/1.oe.51.6.067009
- A multiresolution framework for local similarity based image denoising, Pattern Recognition, Volume 45 (2012) no. 8, p. 2938 | DOI:10.1016/j.patcog.2012.01.023
- Poisson image denoising using fast discrete curvelet transform and wave atom, Signal Processing, Volume 92 (2012) no. 9, p. 2002 | DOI:10.1016/j.sigpro.2012.01.008
- Scattering in Flatland: Efficient Representations via Wave Atoms, Foundations of Computational Mathematics, Volume 10 (2010) no. 5, p. 569 | DOI:10.1007/s10208-010-9070-4
- Compressed Sensing for Surface Characterization and Metrology, IEEE Transactions on Instrumentation and Measurement, Volume 59 (2010) no. 6, p. 1600 | DOI:10.1109/tim.2009.2027744
- , 2009 16th IEEE International Conference on Image Processing (ICIP) (2009), p. 2837 | DOI:10.1109/icip.2009.5414473
- , 2009 IEEE International Conference on Electro/Information Technology (2009), p. 367 | DOI:10.1109/eit.2009.5189644
- Nonlinear Regularized Reaction-Diffusion Filters for Denoising of Images With Textures, IEEE Transactions on Image Processing, Volume 17 (2008) no. 8, p. 1283 | DOI:10.1109/tip.2008.925305
- Characterization of textural surfaces using wave atoms, Applied Physics Letters, Volume 90 (2007) no. 26 | DOI:10.1063/1.2751584
- Wave atoms and sparsity of oscillatory patterns, Applied and Computational Harmonic Analysis, Volume 23 (2007) no. 3, p. 368 | DOI:10.1016/j.acha.2007.03.003
Cité par 17 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier