Comptes Rendus
Wavelet packets with uniform time-frequency localization
[Paquets d'ondelettes avec localisation temps-fréquentielle uniforme]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 10, pp. 793-796.

Nous construisons des paquets d'ondelettes de base uniformément bien localisés en temps et en fréquences. Les bases orthonormées correspondantes de paquets d'ondelettes sons parametrisées par des partitions dyadiques obeissants une condition de variation locale.

We construct basic wavelet packets with uniformly bounded localization in both time and frequency. The corresponding orthonormal bases of wavelet packets are parametrized by dyadic segmentations obeying a local variation condition.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02570-0

Lars F. Villemoes 1

1 Coding Technologies, Döbelnsgatan 64, 11352 Stockholm, Sweden
@article{CRMATH_2002__335_10_793_0,
     author = {Lars F. Villemoes},
     title = {Wavelet packets with uniform time-frequency localization},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {793--796},
     publisher = {Elsevier},
     volume = {335},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02570-0},
     language = {en},
}
TY  - JOUR
AU  - Lars F. Villemoes
TI  - Wavelet packets with uniform time-frequency localization
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 793
EP  - 796
VL  - 335
IS  - 10
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02570-0
LA  - en
ID  - CRMATH_2002__335_10_793_0
ER  - 
%0 Journal Article
%A Lars F. Villemoes
%T Wavelet packets with uniform time-frequency localization
%J Comptes Rendus. Mathématique
%D 2002
%P 793-796
%V 335
%N 10
%I Elsevier
%R 10.1016/S1631-073X(02)02570-0
%G en
%F CRMATH_2002__335_10_793_0
Lars F. Villemoes. Wavelet packets with uniform time-frequency localization. Comptes Rendus. Mathématique, Volume 335 (2002) no. 10, pp. 793-796. doi : 10.1016/S1631-073X(02)02570-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02570-0/

[1] L. Borup, M. Nielsen, Approximation with brushlet systems, J. Approx. Theory, to appear

[2] A. Cohen; E. Séré Time-frequency localization with non-stationary wavelet packets (M.T. Smith; A. Akansu, eds.), Subband and Wavelet Transforms — Theory and Design, Kluwer Academic, 1996, pp. 189-211

[3] R.R. Coifman; Y. Meyer; V. Wickerhauser Size properties of wavelet-packets, Wavelets and Their Applications, Jones and Bartlett, Boston, MA, 1992, pp. 453-470

[4] I. Daubechies; S. Jaffard; J.-L. Journé A simple Wilson orthonormal basis with exponential decay, SIAM J. Math. Anal, Volume 22 (1991), pp. 554-573

[5] T.N.T. Goodman; S.L. Lee; W.S. Tang Wavelets in wandering subspaces, Trans. Amer. Math. Soc, Volume 338 (1993), pp. 639-654

[6] N. Hess-Nielsen Control of frequency spreading of wavelet packets, Appl. Comput. Harmon. Anal, Volume 1 (1994) no. 2, pp. 157-168

[7] E. Laeng Une base orthonormale de L2() dont les éléments sont bien localisés dans l'espace de phase et leurs supports adaptés à toute partition symétrique de l'espace des fréquences, C. R. Acad. Sci. Paris, Série I, Volume 31 (1990) no. 11, pp. 677-680

[8] Y. Meyer Wavelets: Algorithms and Applications, SIAM, 1993

[9] F.G. Meyer; R.R. Coifman Brushlets: a tool for directional image analysis and image compression, Appl. Comput. Harmon. Anal, Volume 4 (1997), pp. 147-187

[10] M. Nielsen; D.-X. Zhou Mean size of wavelet packets, Appl. Comput. Harmon. Anal, Volume 13 (2002), pp. 22-34

[11] E. Séré Localisation fréquentielle des paquets d'ondelettes, Rev. Mat. Iberoamericana, Volume 11 (1995) no. 2, pp. 334-354

[12] L.F. Villemoes Adapted bases of time-frequency local cosines, Appl. Comput. Harmon. Anal, Volume 10 (2001), pp. 139-162

  • M. Purnachandra Rao; E. Srinivasa Reddy RETRACTED ARTICLE: De-noising of EEG signals with shift-based cycle spinning on wave atoms, Soft Computing, Volume 26 (2022) no. 7, p. 3237 | DOI:10.1007/s00500-021-06708-y
  • Xuesong Fu; Jianlin Wang; Zhixiong Hu; Yongqi Guo; Rutong Wang Reference variance and adjustment factor based wave atoms image speckle reduction method for optical coherence tomography images, Optik, Volume 224 (2020), p. 165651 | DOI:10.1016/j.ijleo.2020.165651
  • Tobias Birnbaum; Ayyoub Ahar; David Blinder; Colas Schretter; Tomasz Kozacki; Peter Schelkens Wave atoms for digital hologram compression, Applied Optics, Volume 58 (2019) no. 22, p. 6193 | DOI:10.1364/ao.58.006193
  • Deepak Gambhir; Meenu Manchanda Waveatom transform-based multimodal medical image fusion, Signal, Image and Video Processing, Volume 13 (2019) no. 2, p. 321 | DOI:10.1007/s11760-018-1360-3
  • Heyan Huang; Kang Wang Texture-preserving deconvolution via image decomposition, Signal, Image and Video Processing, Volume 11 (2017) no. 7, p. 1189 | DOI:10.1007/s11760-017-1074-y
  • Mohamed Riad Yagoubi; Amina Serir; Azeddine Beghdadi Joint enhancement-compression of handwritten document images through DjVu encoder, Journal of Visual Communication and Image Representation, Volume 41 (2016), p. 324 | DOI:10.1016/j.jvcir.2016.10.012
  • Zehira Haddad; Azeddine Beghdadi; Amina Serir; Anissa Mokraoui Wave atoms based compression method for fingerprint images, Pattern Recognition, Volume 46 (2013) no. 9, p. 2450 | DOI:10.1016/j.patcog.2013.02.004
  • Hang Yang Fusion of wave atom-based Wiener shrinkage filter and joint non-local means filter for texture-preserving image deconvolution, Optical Engineering, Volume 51 (2012) no. 6, p. 067009 | DOI:10.1117/1.oe.51.6.067009
  • Nasir Rajpoot; Irfan Butt A multiresolution framework for local similarity based image denoising, Pattern Recognition, Volume 45 (2012) no. 8, p. 2938 | DOI:10.1016/j.patcog.2012.01.023
  • Sandeep Palakkal; K.M.M. Prabhu Poisson image denoising using fast discrete curvelet transform and wave atom, Signal Processing, Volume 92 (2012) no. 9, p. 2002 | DOI:10.1016/j.sigpro.2012.01.008
  • Laurent Demanet; Lexing Ying Scattering in Flatland: Efficient Representations via Wave Atoms, Foundations of Computational Mathematics, Volume 10 (2010) no. 5, p. 569 | DOI:10.1007/s10208-010-9070-4
  • Jianwei Ma Compressed Sensing for Surface Characterization and Metrology, IEEE Transactions on Instrumentation and Measurement, Volume 59 (2010) no. 6, p. 1600 | DOI:10.1109/tim.2009.2027744
  • Abdul Adeel Mohammed; Rashid Minhas; Q.M. Jonathan Wu; Maher A. Sid-Ahmed, 2009 16th IEEE International Conference on Image Processing (ICIP) (2009), p. 2837 | DOI:10.1109/icip.2009.5414473
  • Abdul A. Mohammed; Rashid Minhas; Q.M. Jonathan Wu; Maher A. Sid-Ahmed, 2009 IEEE International Conference on Electro/Information Technology (2009), p. 367 | DOI:10.1109/eit.2009.5189644
  • G. Plonka; Jianwei Ma Nonlinear Regularized Reaction-Diffusion Filters for Denoising of Images With Textures, IEEE Transactions on Image Processing, Volume 17 (2008) no. 8, p. 1283 | DOI:10.1109/tip.2008.925305
  • Jianwei Ma Characterization of textural surfaces using wave atoms, Applied Physics Letters, Volume 90 (2007) no. 26 | DOI:10.1063/1.2751584
  • Laurent Demanet; Lexing Ying Wave atoms and sparsity of oscillatory patterns, Applied and Computational Harmonic Analysis, Volume 23 (2007) no. 3, p. 368 | DOI:10.1016/j.acha.2007.03.003

Cité par 17 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: