[Paquets d'ondelettes avec localisation temps-fréquentielle uniforme]
Nous construisons des paquets d'ondelettes de base uniformément bien localisés en temps et en fréquences. Les bases orthonormées correspondantes de paquets d'ondelettes sons parametrisées par des partitions dyadiques obeissants une condition de variation locale.
We construct basic wavelet packets with uniformly bounded localization in both time and frequency. The corresponding orthonormal bases of wavelet packets are parametrized by dyadic segmentations obeying a local variation condition.
Accepté le :
Publié le :
Lars F. Villemoes 1
@article{CRMATH_2002__335_10_793_0, author = {Lars F. Villemoes}, title = {Wavelet packets with uniform time-frequency localization}, journal = {Comptes Rendus. Math\'ematique}, pages = {793--796}, publisher = {Elsevier}, volume = {335}, number = {10}, year = {2002}, doi = {10.1016/S1631-073X(02)02570-0}, language = {en}, }
Lars F. Villemoes. Wavelet packets with uniform time-frequency localization. Comptes Rendus. Mathématique, Volume 335 (2002) no. 10, pp. 793-796. doi : 10.1016/S1631-073X(02)02570-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02570-0/
[1] L. Borup, M. Nielsen, Approximation with brushlet systems, J. Approx. Theory, to appear
[2] Time-frequency localization with non-stationary wavelet packets (M.T. Smith; A. Akansu, eds.), Subband and Wavelet Transforms — Theory and Design, Kluwer Academic, 1996, pp. 189-211
[3] Size properties of wavelet-packets, Wavelets and Their Applications, Jones and Bartlett, Boston, MA, 1992, pp. 453-470
[4] A simple Wilson orthonormal basis with exponential decay, SIAM J. Math. Anal, Volume 22 (1991), pp. 554-573
[5] Wavelets in wandering subspaces, Trans. Amer. Math. Soc, Volume 338 (1993), pp. 639-654
[6] Control of frequency spreading of wavelet packets, Appl. Comput. Harmon. Anal, Volume 1 (1994) no. 2, pp. 157-168
[7] Une base orthonormale de dont les éléments sont bien localisés dans l'espace de phase et leurs supports adaptés à toute partition symétrique de l'espace des fréquences, C. R. Acad. Sci. Paris, Série I, Volume 31 (1990) no. 11, pp. 677-680
[8] Wavelets: Algorithms and Applications, SIAM, 1993
[9] Brushlets: a tool for directional image analysis and image compression, Appl. Comput. Harmon. Anal, Volume 4 (1997), pp. 147-187
[10] Mean size of wavelet packets, Appl. Comput. Harmon. Anal, Volume 13 (2002), pp. 22-34
[11] Localisation fréquentielle des paquets d'ondelettes, Rev. Mat. Iberoamericana, Volume 11 (1995) no. 2, pp. 334-354
[12] Adapted bases of time-frequency local cosines, Appl. Comput. Harmon. Anal, Volume 10 (2001), pp. 139-162
Cité par Sources :
Commentaires - Politique