Comptes Rendus
Hypersurfaces d'un fibré vectoriel Riemannien à courbure de Gauss prescrite
Comptes Rendus. Mathématique, Volume 335 (2002) no. 11, pp. 927-930.

Soient M une variété Riemannienne compacte, E un fibré vectoriel Riemannien sur M et Σ le sous-fibré unitaire de E. On détermine des plongements de Σ dans E dont on prescrit des courbures de Gauss de divers types.

Let M be a compact Riemannian manifold, E a Riemannian vector bundle on M and Σ the sphere subbundle of E. We look for embeddings of Σ into E admitting prescribed Gaussian curvatures of various types.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02588-8

Abdellah Hanani 1

1 Université des sciences et technologies de Lille, UFR de mathématiques pures et appliquées, bât. M2, 59655 Villeneuve d'Ascq cedex, France
@article{CRMATH_2002__335_11_927_0,
     author = {Abdellah Hanani},
     title = {Hypersurfaces d'un fibr\'e vectoriel {Riemannien} \`a courbure de {Gauss} prescrite},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {927--930},
     publisher = {Elsevier},
     volume = {335},
     number = {11},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02588-8},
     language = {fr},
}
TY  - JOUR
AU  - Abdellah Hanani
TI  - Hypersurfaces d'un fibré vectoriel Riemannien à courbure de Gauss prescrite
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 927
EP  - 930
VL  - 335
IS  - 11
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02588-8
LA  - fr
ID  - CRMATH_2002__335_11_927_0
ER  - 
%0 Journal Article
%A Abdellah Hanani
%T Hypersurfaces d'un fibré vectoriel Riemannien à courbure de Gauss prescrite
%J Comptes Rendus. Mathématique
%D 2002
%P 927-930
%V 335
%N 11
%I Elsevier
%R 10.1016/S1631-073X(02)02588-8
%G fr
%F CRMATH_2002__335_11_927_0
Abdellah Hanani. Hypersurfaces d'un fibré vectoriel Riemannien à courbure de Gauss prescrite. Comptes Rendus. Mathématique, Volume 335 (2002) no. 11, pp. 927-930. doi : 10.1016/S1631-073X(02)02588-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02588-8/

[1] L. Caffarelli; L. Nirenberg; J. Spruck Nonlinear second order elliptic equations IV. Starshaped compact Weingarten hypersurfaces (Y. Ohya; K. Kasahara; N. Shimakura, eds.), Current Topics in Partial Differential Equations, Kinokunize, Tokyo, 1986, pp. 1-26

[2] P. Delanoë Plongements radiaux à courbure de Gauss positive prescrite, Ann. Sci. École Norm. Sup., Volume 18 (1985), pp. 635-649

[3] P. Delanoë Local inversion of elliptic problems on compact manifolds, Math. Japon., Volume 35 (1990), pp. 679-692

[4] R.S. Hamilton The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc., Volume 7 (1982), pp. 65-222

[5] M. Nagumo Degree of mapping in convex linear topological spaces, Amer. J. Math., Volume 73 (1951), pp. 497-511

[6] V.-I. Oliker Hypersurfaces in n+1 with prescribed Gaussian curvature and related equations of Monge–Ampère type, Comm. Partial Differential Equations, Volume 9 (1984), pp. 807-838

[7] K. Yano; S. Ishihara Tangent and Cotangent Bundles, Marcel Dekker, New York, 1973

Cité par Sources :

Commentaires - Politique