Comptes Rendus
Nondegeneracy of the Lie algebra 𝔞𝔣𝔣(n)
[Non-dégénérescence de l'algèbre de Lie 𝔞𝔣𝔣(n)]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 12, pp. 1043-1046.

Nous montrons que toute structure de Poisson analytique (resp., formelle), qui s'annule en un point et dont la partie linéaire correspond à l'algèbre 𝔞𝔣𝔣(n) des transformations affines sur n, est localement analytiquement (resp., formellement) linéarisable.

We show that 𝔞𝔣𝔣(n), the Lie algebra of affine transformations of n, is formally and analytically nondegenerate in the sense of A. Weinstein. This means that every analytic (resp., formal) Poisson structure vanishing at a point with a linear part corresponding to 𝔞𝔣𝔣(n) is locally analytically (resp., formally) linearizable.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02599-2

Jean-Paul Dufour 1 ; Nguyen Tien Zung 2

1 GTA, UMR 5030 CNRS, Département de mathématiques, Université Montpellier II, 34095 Montpellier cedex 5, France
2 Laboratoire Emile Picard, UMR 5580 CNRS, UFR MIG, Université Toulouse III, 31062 Toulouse cedex 4, France
@article{CRMATH_2002__335_12_1043_0,
     author = {Jean-Paul Dufour and Nguyen Tien Zung},
     title = {Nondegeneracy of the {Lie} algebra $ \mathfrak{aff}\mathrm{(n)}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1043--1046},
     publisher = {Elsevier},
     volume = {335},
     number = {12},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02599-2},
     language = {en},
}
TY  - JOUR
AU  - Jean-Paul Dufour
AU  - Nguyen Tien Zung
TI  - Nondegeneracy of the Lie algebra $ \mathfrak{aff}\mathrm{(n)}$
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 1043
EP  - 1046
VL  - 335
IS  - 12
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02599-2
LA  - en
ID  - CRMATH_2002__335_12_1043_0
ER  - 
%0 Journal Article
%A Jean-Paul Dufour
%A Nguyen Tien Zung
%T Nondegeneracy of the Lie algebra $ \mathfrak{aff}\mathrm{(n)}$
%J Comptes Rendus. Mathématique
%D 2002
%P 1043-1046
%V 335
%N 12
%I Elsevier
%R 10.1016/S1631-073X(02)02599-2
%G en
%F CRMATH_2002__335_12_1043_0
Jean-Paul Dufour; Nguyen Tien Zung. Nondegeneracy of the Lie algebra $ \mathfrak{aff}\mathrm{(n)}$. Comptes Rendus. Mathématique, Volume 335 (2002) no. 12, pp. 1043-1046. doi : 10.1016/S1631-073X(02)02599-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02599-2/

[1] V.I. Arnold Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1988

[2] J.F. Conn Normal forms for analytic Poisson structures, Ann. of Math. (2), Volume 119 (1984) no. 3, pp. 577-601

[3] J.F. Conn Normal forms for smooth Poisson structures, Ann. of Math. (2), Volume 121 (1985) no. 3, pp. 565-593

[4] J.-P. Dufour Linéarisation de certaines structures de Poisson, J. Differential Geom., Volume 32 (1990) no. 2, pp. 415-428

[5] J.-P. Dufour; J.-Ch. Molinier Une nouvelle famille d'algèbres de Lie non dégénérées, Indag. Math. (N.S.), Volume 6 (1995) no. 1, pp. 67-82

[6] J.-C. Molinier, Linéarisation de structures de Poisson, Thèse, Montpellier, 1993

[7] P. Monnier; N.T. Zung Levi decomposition of smooth Poisson structures, Preprint, 2002 | arXiv

[8] A. Wade Normalisation formelle de structures de Poisson, C. R. Acad. Sci. Paris, Série I, Volume 324 (1997) no. 5, pp. 531-536

[9] A. Weinstein The local structure of Poisson manifolds, J. Differential Geom., Volume 18 (1983) no. 3, pp. 523-557

[10] N.T. Zung Levi decomposition of analytic Poisson structures and Lie algebroids, Preprint, 2002 | arXiv

  • Marius Crainic; Rui Loja Fernandes A geometric approach to Conn's linearization theorem, Annals of Mathematics, Volume 173 (2011) no. 2, p. 1121 | DOI:10.4007/annals.2011.173.2.14
  • I. Cruz; T. Fardilha On sufficient and necessary conditions for linearity of the transverse Poisson structure, Journal of Geometry and Physics, Volume 60 (2010) no. 3, p. 543 | DOI:10.1016/j.geomphys.2009.12.001
  • Laurent Stolovitch Rigidity of Poisson structures, Proceedings of the Steklov Institute of Mathematics, Volume 267 (2009) no. 1, p. 256 | DOI:10.1134/s008154380904021x
  • A. Andrada; M.L. Barberis; G. Ovando Lie bialgebras of complex type and associated Poisson Lie groups, Journal of Geometry and Physics, Volume 58 (2008) no. 10, p. 1310 | DOI:10.1016/j.geomphys.2008.05.006
  • MICHEL NGUIFFO BOYOM KV-COHOMOLOGY OF KOSZUL–VINBERG ALGEBROIDS AND POISSON MANIFOLDS, International Journal of Mathematics, Volume 16 (2005) no. 09, p. 1033 | DOI:10.1142/s0129167x0500320x
  • Rui Loja Fernandes; Philippe Monnier Linearization of Poisson Brackets, Letters in Mathematical Physics, Volume 69 (2004) no. 1-3, p. 89 | DOI:10.1007/s11005-004-0340-4
  • Nguyen Tien Zung Levi decomposition of analytic Poisson structures and Lie algebroids, Topology, Volume 42 (2003) no. 6, p. 1403 | DOI:10.1016/s0040-9383(03)00006-5

Cité par 7 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: