We show that , the Lie algebra of affine transformations of is formally and analytically nondegenerate in the sense of A. Weinstein. This means that every analytic (resp., formal) Poisson structure vanishing at a point with a linear part corresponding to is locally analytically (resp., formally) linearizable.
Nous montrons que toute structure de Poisson analytique (resp., formelle), qui s'annule en un point et dont la partie linéaire correspond à l'algèbre des transformations affines sur , est localement analytiquement (resp., formellement) linéarisable.
Accepted:
Published online:
Jean-Paul Dufour 1; Nguyen Tien Zung 2
@article{CRMATH_2002__335_12_1043_0, author = {Jean-Paul Dufour and Nguyen Tien Zung}, title = {Nondegeneracy of the {Lie} algebra $ \mathfrak{aff}\mathrm{(n)}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {1043--1046}, publisher = {Elsevier}, volume = {335}, number = {12}, year = {2002}, doi = {10.1016/S1631-073X(02)02599-2}, language = {en}, }
Jean-Paul Dufour; Nguyen Tien Zung. Nondegeneracy of the Lie algebra $ \mathfrak{aff}\mathrm{(n)}$. Comptes Rendus. Mathématique, Volume 335 (2002) no. 12, pp. 1043-1046. doi : 10.1016/S1631-073X(02)02599-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02599-2/
[1] Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1988
[2] Normal forms for analytic Poisson structures, Ann. of Math. (2), Volume 119 (1984) no. 3, pp. 577-601
[3] Normal forms for smooth Poisson structures, Ann. of Math. (2), Volume 121 (1985) no. 3, pp. 565-593
[4] Linéarisation de certaines structures de Poisson, J. Differential Geom., Volume 32 (1990) no. 2, pp. 415-428
[5] Une nouvelle famille d'algèbres de Lie non dégénérées, Indag. Math. (N.S.), Volume 6 (1995) no. 1, pp. 67-82
[6] J.-C. Molinier, Linéarisation de structures de Poisson, Thèse, Montpellier, 1993
[7] Levi decomposition of smooth Poisson structures, Preprint, 2002 | arXiv
[8] Normalisation formelle de structures de Poisson, C. R. Acad. Sci. Paris, Série I, Volume 324 (1997) no. 5, pp. 531-536
[9] The local structure of Poisson manifolds, J. Differential Geom., Volume 18 (1983) no. 3, pp. 523-557
[10] Levi decomposition of analytic Poisson structures and Lie algebroids, Preprint, 2002 | arXiv
Cited by Sources:
Comments - Policy