Comptes Rendus
Lower bounds for the counting function of resonances for a perturbation of a periodic Schrödinger operator by decreasing potential
Comptes Rendus. Mathématique, Volume 335 (2002) no. 12, pp. 1013-1016.

We are interested here in the counting function of resonances N(h) for a perturbation of a periodic Schrödinger operator P0 by decreasing potential W(hx) (h0). We obtain a lower bound for N(h) near some singularities of the density of states measure, associated to the unperturbed Hamiltonian P0.

On s'intéresse ici à la fonction de comptage N(h) du nombre de résonances de l'opérateur de Schrödinger périodique P0 perturbé par un potentiel décroissant W(hx) (h0). Nous obtenons une minoration de N(h) près de certaines singularités de la densité d'états associée à l'opérateur non perturbé P0.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-073X(02)02600-6

Mouez Dimassi 1; Maher Mnif 2

1 Institut Galilée, avenue Jean-Baptiste-Clément, 93430 Villetaneuse, France
2 I.P.E.I.S., boite postale 805, Sfax 3000, Tunisie
@article{CRMATH_2002__335_12_1013_0,
     author = {Mouez Dimassi and Maher Mnif},
     title = {Lower bounds for the counting function of resonances for a perturbation of a periodic {Schr\"odinger} operator by decreasing potential},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1013--1016},
     publisher = {Elsevier},
     volume = {335},
     number = {12},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02600-6},
     language = {en},
}
TY  - JOUR
AU  - Mouez Dimassi
AU  - Maher Mnif
TI  - Lower bounds for the counting function of resonances for a perturbation of a periodic Schrödinger operator by decreasing potential
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 1013
EP  - 1016
VL  - 335
IS  - 12
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02600-6
LA  - en
ID  - CRMATH_2002__335_12_1013_0
ER  - 
%0 Journal Article
%A Mouez Dimassi
%A Maher Mnif
%T Lower bounds for the counting function of resonances for a perturbation of a periodic Schrödinger operator by decreasing potential
%J Comptes Rendus. Mathématique
%D 2002
%P 1013-1016
%V 335
%N 12
%I Elsevier
%R 10.1016/S1631-073X(02)02600-6
%G en
%F CRMATH_2002__335_12_1013_0
Mouez Dimassi; Maher Mnif. Lower bounds for the counting function of resonances for a perturbation of a periodic Schrödinger operator by decreasing potential. Comptes Rendus. Mathématique, Volume 335 (2002) no. 12, pp. 1013-1016. doi : 10.1016/S1631-073X(02)02600-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02600-6/

[1] M. Dimassi, M. Zerzeri, A local trace formula for resonances of perturbed periodic Schrödinger operators, J. Funct. Anal., à paraı̂tre

[2] L. Nedelec Localisation of resonances for matrix Schrödinger operators, Duke Math. J., Volume 106 (2001) no. 2, pp. 209-236

[3] M. Reed; B. Simon Methods of Modern Mathematical Physics, Analysis Operators, Academic Press, New York, 1978

[4] J. Sjöstrand, A trace formula for resonances and application to semi-classical Schrödinger operators, Séminaire équations aux dérivées partielles, Exposé no 11 (1996–97)

Cited by Sources:

Comments - Policy