A Drift-Diffusion-Schrödinger–Poisson system is presented, which models the transport of a quasi bidimensional electron gas confined in a nanostructure. We prove the existence of a unique solution to this nonlinear system. The proof makes use of some a priori estimates due to the physical structure of the problem, and also involves the resolution of a quasistatic Schrödinger–Poisson system.
Nous présentons un système de Dérive-Diffusion-Schrödinger–Poisson qui décrit le transport d'un gaz d'électrons confiné dans une nanostructure. Nous montrons que ce système admet une unique solution. Cette preuve d'existence est obtenue à l'aide d'estimations a priori dues à la nature physique du problème et passe par la résolution d'un système quasistatique de Schrödinger–Poisson.
Accepted:
Published online:
Naoufel Ben Abdallah 1; Florian Méhats 1; Nicolas Vauchelet 2
@article{CRMATH_2002__335_12_1007_0, author = {Naoufel Ben Abdallah and Florian M\'ehats and Nicolas Vauchelet}, title = {Analysis of a {Drift-Diffusion-Schr\"odinger{\textendash}Poisson} model}, journal = {Comptes Rendus. Math\'ematique}, pages = {1007--1012}, publisher = {Elsevier}, volume = {335}, number = {12}, year = {2002}, doi = {10.1016/S1631-073X(02)02612-2}, language = {en}, }
TY - JOUR AU - Naoufel Ben Abdallah AU - Florian Méhats AU - Nicolas Vauchelet TI - Analysis of a Drift-Diffusion-Schrödinger–Poisson model JO - Comptes Rendus. Mathématique PY - 2002 SP - 1007 EP - 1012 VL - 335 IS - 12 PB - Elsevier DO - 10.1016/S1631-073X(02)02612-2 LA - en ID - CRMATH_2002__335_12_1007_0 ER -
Naoufel Ben Abdallah; Florian Méhats; Nicolas Vauchelet. Analysis of a Drift-Diffusion-Schrödinger–Poisson model. Comptes Rendus. Mathématique, Volume 335 (2002) no. 12, pp. 1007-1012. doi : 10.1016/S1631-073X(02)02612-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02612-2/
[1] N. Ben Abdallah, F. Méhats, On a Vlasov–Schrödinger–Poisson system, submitted
[2] N. Ben Abdallah, F. Méhats, N. Vauchelet, in preparation
[3] On existence, uniqueness and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors, Z. Angew. Math. Mech, Volume 65 (1985) no. 2, pp. 101-108
[4] Linear and Quasi-Linear Equations of Parabolic Type, Transl. Math. Monographs, American Mathematical Society, 1988
[5] Semiconductor Equations, Springer-Verlag, Vienna, 1990
[6] A stationary Schrödinger–Poisson system arising from the modelling of electronic devices, Forum Math, Volume 2 (1990) no. 5, pp. 489-510
[7] Inverse Spectral Theory, Academic Press, 1987
Cited by Sources:
Comments - Policy