On considère un modèle de Saint-Venant avec viscosité et terme de friction en dimension deux, pour lequel on obtient un résultat d'existence globale de solutions faibles. On montre également la convergence de ces solutions vers la solution forte globale des équations quasi-géostrophiques visqueuses avec terme de surface libre pour des données bien préparées.
We consider a two dimensional viscous shallow water model with friction term. The existence of global weak solutions is obtained and convergence to the strong solution of the viscous quasi-geostrophic equation with free surface term is proven in the well prepared case.
Accepté le :
Publié le :
Didier Bresch 1 ; Benoı̂t Desjardins 2
@article{CRMATH_2002__335_12_1079_0, author = {Didier Bresch and Beno{\i}̂t Desjardins}, title = {Sur un mod\`ele de {Saint-Venant} visqueux et sa limite quasi-g\'eostrophique}, journal = {Comptes Rendus. Math\'ematique}, pages = {1079--1084}, publisher = {Elsevier}, volume = {335}, number = {12}, year = {2002}, doi = {10.1016/S1631-073X(02)02610-9}, language = {fr}, }
TY - JOUR AU - Didier Bresch AU - Benoı̂t Desjardins TI - Sur un modèle de Saint-Venant visqueux et sa limite quasi-géostrophique JO - Comptes Rendus. Mathématique PY - 2002 SP - 1079 EP - 1084 VL - 335 IS - 12 PB - Elsevier DO - 10.1016/S1631-073X(02)02610-9 LA - fr ID - CRMATH_2002__335_12_1079_0 ER -
Didier Bresch; Benoı̂t Desjardins. Sur un modèle de Saint-Venant visqueux et sa limite quasi-géostrophique. Comptes Rendus. Mathématique, Volume 335 (2002) no. 12, pp. 1079-1084. doi : 10.1016/S1631-073X(02)02610-9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02610-9/
[1] Global splitting in rotating shallow-water equations, European J. Mech. B Fluids, Volume 16 (1997), pp. 725-754
[2] D. Bresch, B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys. (2002), soumis
[3] D. Bresch, B. Desjardins, C.K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water systems, Comm. Partial Differential Equations (2002), à paraı̂tre
[4] Rotating fluid at high Rossby number driven by a surface stress: existence and convergence, Adv. Differential Equations, Volume 2 (1997) no. 5, pp. 715-751
[5] B. Desjardins, J.-Y. Chemin, I. Gallagher, E. Grenier (2001), livre en préparation
[6] Low Froude number limiting dynamics for stably stratified flow with small or finite Rossby numbers, Geosphys. Astrophys. Fluid Dynamics, Volume 87 (1998), pp. 1-50
[7] Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity, Comm. Partial Differential Equations, Volume 21 (1996), pp. 619-658
[8] The energetically consistent shallow water equations, J. Atmos. Sci, Volume 50 (1993), pp. 1323-1325
[9] Derivation of viscous Saint-Venant system for laminar shallow water; Numerical results, Discrete Continuous Dynamical Systems Series B, Volume 1 (2001) no. 1, pp. 89-102
[10] Ekman layers of rotating fluids, the case of well prepared initial data, Comm. Partial Differential Equations, Volume 22 (1997) no. 5–6, pp. 953-975
[11] Mathematical Topics in Fluid Dynamics, Vol. 2. Compressible Models, Oxford University Press, 1998
[12] On the equations of the large scale Ocean, Nonlinearity, Volume 5 (1992), pp. 1007-1053
[13] Ekman layers of rotating fluids: the case of general initial data, Comm. Pure Appl. Math, Volume 53 (2000) no. 4, pp. 432-483
[14] Un théorème d'existence de solutions d'un problème de shallow water, Arch. Rational Mech. Anal, Volume 130 (1995) no. 2, pp. 183-204
[15] Geophysical Fluid Dynamics, Springer-Verlag, 1987
[16] Singular limits in bounded domains for quasilinear symmetric hyperbolic systems having a vorticity equation, J. Differential Equations, Volume 68 (1987) no. 3, pp. 400-428
[17] Global existence for the Dirichlet problem for the viscous shallow water equations, J. Math. Anal. Appl, Volume 202 (1996) no. 1, pp. 236-258
- Analytical solutions to the 2D compressible Navier-Stokes equations with density-dependent viscosity coefficients, AIMS Mathematics, Volume 10 (2025) no. 5, p. 10831 | DOI:10.3934/math.2025492
- Global solutions of the one-dimensional compressible Euler equations with nonlocal interactions via the inviscid limit, Archive for Rational Mechanics and Analysis, Volume 249 (2025) no. 3, p. 62 (Id/No 38) | DOI:10.1007/s00205-025-02097-w | Zbl:8052363
- Existence of weak solutions and long-time asymptotics for hydrodynamic model of swarming, Journal of the London Mathematical Society. Second Series, Volume 111 (2025) no. 2, p. 47 (Id/No e70088) | DOI:10.1112/jlms.70088 | Zbl:1558.35195
- Structure‐Preserving Approximations of the Serre‐Green‐Naghdi Equations in Standard and Hyperbolic Form, Numerical Methods for Partial Differential Equations, Volume 41 (2025) no. 4 | DOI:10.1002/num.70016
- Global solutions of the compressible Euler-Poisson equations for plasma with doping profile for large initial data of spherical symmetry, SIAM Journal on Mathematical Analysis, Volume 57 (2025) no. 2, pp. 1227-1279 | DOI:10.1137/23m1605806 | Zbl:8008472
- Asymptotic development of Kazhikhov-Smagulov equations, Bulletin of Mathematical Analysis and Applications, Volume 16 (2024) no. 4, pp. 35-60 | Zbl:8001201
- Global finite-energy solutions of the compressible Euler-Poisson equations for general pressure laws with large initial data of spherical symmetry, Communications in Mathematical Physics, Volume 405 (2024) no. 3, p. 85 (Id/No 77) | DOI:10.1007/s00220-023-04916-1 | Zbl:1536.35258
- Global solutions of the compressible Euler-Poisson equations with large initial data of spherical symmetry, Communications on Pure and Applied Mathematics, Volume 77 (2024) no. 6, pp. 2947-3025 | DOI:10.1002/cpa.22149 | Zbl:1540.35402
- Global solutions of the compressible Euler equations with large initial data of spherical symmetry and positive far-field density, Archive for Rational Mechanics and Analysis, Volume 243 (2022) no. 3, pp. 1699-1771 | DOI:10.1007/s00205-021-01742-4 | Zbl:1508.35048
- Existence of global weak solutions to 2D reduced gravity two-and-a-half layer model, Nonlinear Analysis. Real World Applications, Volume 67 (2022), p. 42 (Id/No 103625) | DOI:10.1016/j.nonrwa.2022.103625 | Zbl:1504.35382
- Optimal boundary control of Saint-Venant equations with arbitrary friction and space-varying slope, IMA Journal of Mathematical Control and Information, Volume 38 (2021) no. 3, p. 881 | DOI:10.1093/imamci/dnab016
- High Mach number limit for Korteweg fluids with density dependent viscosity, Journal of Differential Equations, Volume 277 (2021), pp. 1-37 | DOI:10.1016/j.jde.2020.12.017 | Zbl:1456.76110
- Global smooth solutions for 1D barotropic Navier-Stokes equations with a large class of degenerate viscosities, Journal of Nonlinear Science, Volume 30 (2020) no. 4, pp. 1703-1721 | DOI:10.1007/s00332-020-09622-z | Zbl:1442.35339
- Global existence of weak solutions to the compressible quantum Navier-Stokes equations with degenerate viscosity, Journal of Mathematical Physics, Volume 60 (2019) no. 12, p. 121502 | DOI:10.1063/1.5127797 | Zbl:1432.76307
- Global well-posedness and large-time behavior of classical solutions to the 3D Navier-Stokes system with changed viscosities, Journal of Mathematical Physics, Volume 60 (2019) no. 3, p. 031502 | DOI:10.1063/1.5083646 | Zbl:1414.76016
- On the existence of local classical solutions to the Navier-Stokes equations with degenerate viscosities, Journal of Mathematical Physics, Volume 60 (2019) no. 9, p. 091508 | DOI:10.1063/1.5118273 | Zbl:1422.76150
- On the compactness of weak solutions to the Navier-Stokes-Korteweg equations for capillary fluids, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 187 (2019), pp. 110-124 | DOI:10.1016/j.na.2019.03.020 | Zbl:1428.35342
- On the compactness of finite energy weak solutions to the quantum Navier-Stokes equations, Journal of Hyperbolic Differential Equations, Volume 15 (2018) no. 1, pp. 133-147 | DOI:10.1142/s0219891618500054 | Zbl:1390.35223
- Global existence of finite energy weak solutions of quantum Navier-Stokes equations, Archive for Rational Mechanics and Analysis, Volume 225 (2017) no. 3, pp. 1161-1199 | DOI:10.1007/s00205-017-1124-1 | Zbl:1375.35306
- On a model for mixture flows: derivation, dissipation and stability properties, Archive for Rational Mechanics and Analysis, Volume 220 (2016) no. 1, pp. 1-35 | DOI:10.1007/s00205-015-0925-3 | Zbl:1339.35319
- Existence of spherically symmetric solutions for a reduced gravity two-and-a-half layer system, Journal of Differential Equations, Volume 261 (2016) no. 3, pp. 1637-1668 | DOI:10.1016/j.jde.2016.04.012 | Zbl:1361.76006
- Global existence of weak solutions for the multicomponent reaction flows, Journal of Mathematical Analysis and Applications, Volume 441 (2016) no. 2, pp. 801-814 | DOI:10.1016/j.jmaa.2016.04.041 | Zbl:1341.35134
- Analytical solutions to the compressible Navier-Stokes equations with density-dependent viscosity coefficients and free boundaries, Journal of Differential Equations, Volume 253 (2012) no. 1, pp. 1-19 | DOI:10.1016/j.jde.2012.03.023 | Zbl:1239.35109
- Existence of global strong solutions in critical spaces for barotropic viscous fluids, Archive for Rational Mechanics and Analysis, Volume 202 (2011) no. 2, pp. 427-460 | DOI:10.1007/s00205-011-0430-2 | Zbl:1427.76230
- A discontinuous Galerkin method for viscous compressible multifluids, Journal of Computational Physics, Volume 229 (2010) no. 6, pp. 2249-2266 | DOI:10.1016/j.jcp.2009.11.033 | Zbl:1303.76088
- Existence and uniqueness of strong solutions for a compressible multiphase Navier-Stokes miscible fluid-flow problem in dimension
, M AS. Mathematical Models Methods in Applied Sciences, Volume 19 (2009) no. 3, pp. 443-476 | DOI:10.1142/s0218202509003498 | Zbl:1166.76047 - Existence and Uniqueness of Global Strong Solutions for One-Dimensional Compressible Navier–Stokes Equations, SIAM Journal on Mathematical Analysis, Volume 39 (2008) no. 4, p. 1344 | DOI:10.1137/060658199
- On the barotropic compressible Navier-Stokes equations, Communications in Partial Differential Equations, Volume 32 (2007) no. 3, pp. 431-452 | DOI:10.1080/03605300600857079 | Zbl:1149.35070
- Open boundary control problem for Navier-Stokes equations including a free surface: data assimilation, Computers Mathematics with Applications, Volume 52 (2006) no. 8-9, pp. 1269-1288 | DOI:10.1016/j.camwa.2006.11.005 | Zbl:1118.49017
- Bounds on the density for a compressible Navier-Stokes problem on a time dependent domain with Dirichlet boundary conditions., Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 339 (2004) no. 4, pp. 251-256 | DOI:10.1016/j.crma.2004.06.010 | Zbl:1053.35116
- A new model of Saint Venant and Savage–Hutter type for gravity driven shallow water flows., Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 336 (2003) no. 6, pp. 531-536 | DOI:10.1016/s1631-073x(03)00117-1 | Zbl:1044.35056
Cité par 31 documents. Sources : Crossref, zbMATH
Commentaires - Politique