[Groupe modulaire d'une surface non-orientable et l'espace des modules des surfaces de Klein]
Comme pour les surfaces de Riemann, l'espace des modules des surfaces de Klein fermées, non-orientable et de genre g peut être défini comme l'espace des orbites de l'espace de Teichmüller sous l'action du groupe modulaire Modg d'une surface fermée, non-orientable. Utilisant l'ensemble de générateurs donné par Birman et Chillingworth nous prouvons que le dernier groupe est engendré par des involutions. On en déduit, utilisant le résultat d'Armstrong, que l'espace des modules est simplement-connexe.
As for Riemann surfaces, the moduli space of closed non-orientable Klein surfaces of genus g can be defined as the orbit space of the Teichmüller space by the mapping class group Modg of a closed non-orientable surface. Using the set of generators given by Birman and Chillingworth, we prove that the latter group is generated by involutions. We conclude, using the Armstrong's result, that the moduli space is simply-connected.
Accepté le :
Publié le :
Błażej Szepietowski 1
@article{CRMATH_2002__335_12_1053_0, author = {B{\l}a\.zej Szepietowski}, title = {Mapping class group of a non-orientable surface and moduli space of {Klein} surfaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {1053--1056}, publisher = {Elsevier}, volume = {335}, number = {12}, year = {2002}, doi = {10.1016/S1631-073X(02)02617-1}, language = {en}, }
Błażej Szepietowski. Mapping class group of a non-orientable surface and moduli space of Klein surfaces. Comptes Rendus. Mathématique, Volume 335 (2002) no. 12, pp. 1053-1056. doi : 10.1016/S1631-073X(02)02617-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02617-1/
[1] Foundations of the Theory of Klein Surfaces, Lecture Notes in Math., 219, Springer-Verlag, 1971
[2] The fundamental group of the orbit space of a discontinous group, Proc. Cambridge Philos. Soc., Volume 64 (1968), pp. 299-301
[3] On the homeotopy group of a non-orientable surface, Proc. Cambridge Philos. Soc., Volume 71 (1972), pp. 437-448
[4] Homeomorphisms of non-orientable two-manifolds, Proc. Cambridge Philos. Soc., Volume 59 (1963), pp. 307-317
[5] Spaces of subgroups and Teichmüller space, Proc. London Math. Soc., Volume 31 (1975), pp. 211-256
[6] Modulus space is simply-connected, Proc. Amer. Math. Soc., Volume 29 (1971), pp. 185-186
[7] Involutions in surface mapping class groups, Enseign. Math., Volume 33 (1987), pp. 275-290
Cité par Sources :
Commentaires - Politique