[Groupe modulaire d'une surface non-orientable et l'espace des modules des surfaces de Klein]
As for Riemann surfaces, the moduli space of closed non-orientable Klein surfaces of genus g can be defined as the orbit space of the Teichmüller space
Comme pour les surfaces de Riemann, l'espace des modules des surfaces de Klein fermées, non-orientable et de genre g peut être défini comme l'espace des orbites de l'espace de Teichmüller
Accepté le :
Publié le :
Błażej Szepietowski 1
@article{CRMATH_2002__335_12_1053_0, author = {B{\l}a\.zej Szepietowski}, title = {Mapping class group of a non-orientable surface and moduli space of {Klein} surfaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {1053--1056}, publisher = {Elsevier}, volume = {335}, number = {12}, year = {2002}, doi = {10.1016/S1631-073X(02)02617-1}, language = {en}, }
Błażej Szepietowski. Mapping class group of a non-orientable surface and moduli space of Klein surfaces. Comptes Rendus. Mathématique, Volume 335 (2002) no. 12, pp. 1053-1056. doi : 10.1016/S1631-073X(02)02617-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02617-1/
[1] Foundations of the Theory of Klein Surfaces, Lecture Notes in Math., 219, Springer-Verlag, 1971
[2] The fundamental group of the orbit space of a discontinous group, Proc. Cambridge Philos. Soc., Volume 64 (1968), pp. 299-301
[3] On the homeotopy group of a non-orientable surface, Proc. Cambridge Philos. Soc., Volume 71 (1972), pp. 437-448
[4] Homeomorphisms of non-orientable two-manifolds, Proc. Cambridge Philos. Soc., Volume 59 (1963), pp. 307-317
[5] Spaces of subgroups and Teichmüller space, Proc. London Math. Soc., Volume 31 (1975), pp. 211-256
[6] Modulus space is simply-connected, Proc. Amer. Math. Soc., Volume 29 (1971), pp. 185-186
[7] Involutions in surface mapping class groups, Enseign. Math., Volume 33 (1987), pp. 275-290
Cité par Sources :
Commentaires - Politique