Comptes Rendus
Analyse numérique
Méthodes de relaxation d'ondes (SWR) pour l'équation de la chaleur en dimension 1
Comptes Rendus. Mathématique, Volume 336 (2003) no. 6, pp. 519-524.

Nous introduisons des algorithmes de relaxation d'ondes (SWR) pour l'équation de la chaleur, basés sur l'utilisation de conditions de transmission optimisées. Ils convergent ainsi beaucoup plus vite que l'algorithme classique. Nous analysons ensuite la dépendance de la convergence par rapport à la taille du recouvrement et au pas de discrétisation en temps.

We introduce Schwarz Waveform Relaxation algorithms (SWR) for the heat equation which have a much faster convergence rate than the classical one due to optimized transmission conditions between subdomains. We analyze the asymptotic dependence of the convergence rate with respect to the size of the overlap and the time step.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00009-8

Martin J. Gander 1 ; Laurence Halpern 2

1 Department of Mathematics and Statistics, McGill University, Montreal, Canada
2 LAGA, Institut Galilée, Université Paris XIII, 93430 Villetaneuse, France
@article{CRMATH_2003__336_6_519_0,
     author = {Martin J. Gander and Laurence Halpern},
     title = {M\'ethodes de relaxation d'ondes {(SWR)} pour l'\'equation de la chaleur en dimension 1},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {519--524},
     publisher = {Elsevier},
     volume = {336},
     number = {6},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00009-8},
     language = {fr},
}
TY  - JOUR
AU  - Martin J. Gander
AU  - Laurence Halpern
TI  - Méthodes de relaxation d'ondes (SWR) pour l'équation de la chaleur en dimension 1
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 519
EP  - 524
VL  - 336
IS  - 6
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00009-8
LA  - fr
ID  - CRMATH_2003__336_6_519_0
ER  - 
%0 Journal Article
%A Martin J. Gander
%A Laurence Halpern
%T Méthodes de relaxation d'ondes (SWR) pour l'équation de la chaleur en dimension 1
%J Comptes Rendus. Mathématique
%D 2003
%P 519-524
%V 336
%N 6
%I Elsevier
%R 10.1016/S1631-073X(03)00009-8
%G fr
%F CRMATH_2003__336_6_519_0
Martin J. Gander; Laurence Halpern. Méthodes de relaxation d'ondes (SWR) pour l'équation de la chaleur en dimension 1. Comptes Rendus. Mathématique, Volume 336 (2003) no. 6, pp. 519-524. doi : 10.1016/S1631-073X(03)00009-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00009-8/

[1] M.J. Gander; L. Halpern; F. Nataf Optimal convergence for overlapping and non-overlapping Schwarz waveform relaxation (C.-H. Lai; P. Bjørstad; M. Cross; O. Widlund, eds.), Eleventh International Conference of Domain Decomposition Methods, 1999 (ddm.org)

[2] M.J. Gander, H. Zhao, Overlapping Schwarz waveform relaxation for parabolic problems in higher dimension, à paraı̂tre dans BIT (2002)

[3] C. Japhet; F. Nataf; F. Rogier The optimized order 2 method. Application to convection–diffusion problems, Future Generation Computer Systems FUTURE, Volume 18 (2001)

[4] E. Lelarasmee; A.E. Ruehli; A.L. Sangiovanni-Vincentelli The waveform relaxation method for time-domain analysis of large scale integrated circuits, IEEE Trans. CAD of IC Systems, Volume 1 (1982), pp. 131-145

[5] J.L. Lions; E. Magenes Problèmes aux limites non homogènes et applications, Dunod, Paris, 1968

[6] G. Meinardus Approximation of Functions: Theory and Numerical Methods, Springer-Verlag, Berlin, 1967

[7] E. Picard Sur l'application des méthodes d'approximations successives à l'étude de certaines équations différentielles ordinaires, J. Math. Pures Appl., Volume 9 (1893), pp. 217-271

  • Arthur Arnoult; Caroline Japhet; Pascal Omnes Discrete-time analysis of optimized Schwarz waveform relaxation with Robin parameters depending on the targeted iteration count, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 57 (2023) no. 4, p. 2371 | DOI:10.1051/m2an/2023051
  • Martin J. Gander; Véronique Martin Why Fourier mode analysis in time is different when studying Schwarz Waveform Relaxation, Journal of Computational Physics, Volume 491 (2023), p. 112316 | DOI:10.1016/j.jcp.2023.112316
  • Sophie Thery; Charles Pelletier; Florian Lemarié; Eric Blayo Analysis of Schwarz waveform relaxation for the coupled Ekman boundary layer problem with continuously variable coefficients, Numerical Algorithms, Volume 89 (2022) no. 3, p. 1145 | DOI:10.1007/s11075-021-01149-y
  • Franz Chouly; Pauline Klein Wave-heat coupling in one-dimensional unbounded domains: artificial boundary conditions and an optimized Schwarz method, Numerical Algorithms, Volume 90 (2022) no. 2, p. 631 | DOI:10.1007/s11075-021-01201-x
  • Martin J. Gander; Pratik M. Kumbhar; Albert E. Ruehli Asymptotic Analysis for Overlap in Waveform Relaxation Methods for RC Type Circuits, Journal of Scientific Computing, Volume 84 (2020) no. 1 | DOI:10.1007/s10915-020-01270-5
  • Tarik Menkad; Anestis Dounavis Resistive Coupling-Based Waveform Relaxation Algorithm for Analysis of Interconnect Circuits, IEEE Transactions on Circuits and Systems I: Regular Papers, Volume 64 (2017) no. 7, p. 1877 | DOI:10.1109/tcsi.2017.2665973
  • Mohammad Al-Khaleel; Martin J. Gander; Albert E. Ruehli A mathematical analysis of optimized waveform relaxation for a small RC circuit, Applied Numerical Mathematics, Volume 75 (2014), p. 61 | DOI:10.1016/j.apnum.2012.12.005
  • Shu-Lin Wu; Ting-Zhu Huang Quasi-Optimized Overlapping Schwarz Waveform Relaxation Algorithm for PDEs with Time-Delay, Communications in Computational Physics, Volume 14 (2013) no. 3, p. 780 | DOI:10.4208/cicp.100312.071112a
  • Florian Lemarié; Laurent Debreu; Eric Blayo Optimal Control of the Convergence Rate of Schwarz Waveform Relaxation Algorithms, Domain Decomposition Methods in Science and Engineering XX, Volume 91 (2013), p. 599 | DOI:10.1007/978-3-642-35275-1_71
  • Luca Gerardo-Giorda; Mauro Perego Optimized Schwarz Methods for the Bidomain system in electrocardiology, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 47 (2013) no. 2, p. 583 | DOI:10.1051/m2an/2012040
  • Yves Courvoisier; Martin J. Gander Optimization of Schwarz waveform relaxation over short time windows, Numerical Algorithms, Volume 64 (2013) no. 2, p. 221 | DOI:10.1007/s11075-012-9662-y
  • F. Haeberlein; A. Michel; F. Caetano Time space domain decomposition for reactive transport, Procedia Computer Science, Volume 1 (2010) no. 1, p. 753 | DOI:10.1016/j.procs.2010.04.081
  • M. Al-Khaleel; A.E. Ruchli; M.J. Gander Optimized Waveform Relaxation Methods for Longitudinal Partitioning of Transmission Lines, IEEE Transactions on Circuits and Systems I: Regular Papers, Volume 56 (2009) no. 8, p. 1732 | DOI:10.1109/tcsi.2008.2008286
  • V. Dolean; M.J. Gander; L. Gerardo-Giorda Optimized Schwarz Methods for Maxwell's Equations, SIAM Journal on Scientific Computing, Volume 31 (2009) no. 3, p. 2193 | DOI:10.1137/080728536
  • Véronique Martin Schwarz Waveform Relaxation Algorithms for the Linear Viscous Equatorial Shallow Water Equations, SIAM Journal on Scientific Computing, Volume 31 (2009) no. 5, p. 3595 | DOI:10.1137/070691450
  • Martin J. Gander; Laurence Halpern; Stéphane Labbé; Kévin Santugini-Repiquet An Optimized Schwarz Waveform Relaxation Algorithm for Micro-Magnetics, Domain Decomposition Methods in Science and Engineering XVII, Volume 60 (2008), p. 203 | DOI:10.1007/978-3-540-75199-1_22
  • M. J. Gander; L. Halpern Optimized Schwarz Waveform Relaxation Methods for Advection Reaction Diffusion Problems, SIAM Journal on Numerical Analysis, Volume 45 (2007) no. 2, p. 666 | DOI:10.1137/050642137
  • Victorita Dolean; Frédéric Nataf A new domain decomposition method for the compressible Euler equations, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 40 (2006) no. 4, p. 689 | DOI:10.1051/m2an:2006026
  • Martin J. Gander Optimized Schwarz Methods, SIAM Journal on Numerical Analysis, Volume 44 (2006) no. 2, p. 699 | DOI:10.1137/s0036142903425409
  • Véronique Martin An optimized Schwarz waveform relaxation method for the unsteady convection diffusion equation in two dimensions, Applied Numerical Mathematics, Volume 52 (2005) no. 4, p. 401 | DOI:10.1016/j.apnum.2004.08.022
  • Philippe d'Anfray; Laurence Halpern; Juliette Ryan New trends in coupled simulations featuring domain decomposition and metacomputing, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 36 (2002) no. 5, p. 953 | DOI:10.1051/m2an:2002043

Cité par 21 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: