Nous introduisons des algorithmes de relaxation d'ondes (SWR) pour l'équation de la chaleur, basés sur l'utilisation de conditions de transmission optimisées. Ils convergent ainsi beaucoup plus vite que l'algorithme classique. Nous analysons ensuite la dépendance de la convergence par rapport à la taille du recouvrement et au pas de discrétisation en temps.
We introduce Schwarz Waveform Relaxation algorithms (SWR) for the heat equation which have a much faster convergence rate than the classical one due to optimized transmission conditions between subdomains. We analyze the asymptotic dependence of the convergence rate with respect to the size of the overlap and the time step.
Accepté le :
Publié le :
Martin J. Gander 1 ; Laurence Halpern 2
@article{CRMATH_2003__336_6_519_0, author = {Martin J. Gander and Laurence Halpern}, title = {M\'ethodes de relaxation d'ondes {(SWR)} pour l'\'equation de la chaleur en dimension 1}, journal = {Comptes Rendus. Math\'ematique}, pages = {519--524}, publisher = {Elsevier}, volume = {336}, number = {6}, year = {2003}, doi = {10.1016/S1631-073X(03)00009-8}, language = {fr}, }
TY - JOUR AU - Martin J. Gander AU - Laurence Halpern TI - Méthodes de relaxation d'ondes (SWR) pour l'équation de la chaleur en dimension 1 JO - Comptes Rendus. Mathématique PY - 2003 SP - 519 EP - 524 VL - 336 IS - 6 PB - Elsevier DO - 10.1016/S1631-073X(03)00009-8 LA - fr ID - CRMATH_2003__336_6_519_0 ER -
Martin J. Gander; Laurence Halpern. Méthodes de relaxation d'ondes (SWR) pour l'équation de la chaleur en dimension 1. Comptes Rendus. Mathématique, Volume 336 (2003) no. 6, pp. 519-524. doi : 10.1016/S1631-073X(03)00009-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00009-8/
[1] Optimal convergence for overlapping and non-overlapping Schwarz waveform relaxation (C.-H. Lai; P. Bjørstad; M. Cross; O. Widlund, eds.), Eleventh International Conference of Domain Decomposition Methods, 1999 (ddm.org)
[2] M.J. Gander, H. Zhao, Overlapping Schwarz waveform relaxation for parabolic problems in higher dimension, à paraı̂tre dans BIT (2002)
[3] The optimized order 2 method. Application to convection–diffusion problems, Future Generation Computer Systems FUTURE, Volume 18 (2001)
[4] The waveform relaxation method for time-domain analysis of large scale integrated circuits, IEEE Trans. CAD of IC Systems, Volume 1 (1982), pp. 131-145
[5] Problèmes aux limites non homogènes et applications, Dunod, Paris, 1968
[6] Approximation of Functions: Theory and Numerical Methods, Springer-Verlag, Berlin, 1967
[7] Sur l'application des méthodes d'approximations successives à l'étude de certaines équations différentielles ordinaires, J. Math. Pures Appl., Volume 9 (1893), pp. 217-271
- Discrete-time analysis of optimized Schwarz waveform relaxation with Robin parameters depending on the targeted iteration count, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 57 (2023) no. 4, p. 2371 | DOI:10.1051/m2an/2023051
- Why Fourier mode analysis in time is different when studying Schwarz Waveform Relaxation, Journal of Computational Physics, Volume 491 (2023), p. 112316 | DOI:10.1016/j.jcp.2023.112316
- Analysis of Schwarz waveform relaxation for the coupled Ekman boundary layer problem with continuously variable coefficients, Numerical Algorithms, Volume 89 (2022) no. 3, p. 1145 | DOI:10.1007/s11075-021-01149-y
- Wave-heat coupling in one-dimensional unbounded domains: artificial boundary conditions and an optimized Schwarz method, Numerical Algorithms, Volume 90 (2022) no. 2, p. 631 | DOI:10.1007/s11075-021-01201-x
- Asymptotic Analysis for Overlap in Waveform Relaxation Methods for RC Type Circuits, Journal of Scientific Computing, Volume 84 (2020) no. 1 | DOI:10.1007/s10915-020-01270-5
- Resistive Coupling-Based Waveform Relaxation Algorithm for Analysis of Interconnect Circuits, IEEE Transactions on Circuits and Systems I: Regular Papers, Volume 64 (2017) no. 7, p. 1877 | DOI:10.1109/tcsi.2017.2665973
- A mathematical analysis of optimized waveform relaxation for a small RC circuit, Applied Numerical Mathematics, Volume 75 (2014), p. 61 | DOI:10.1016/j.apnum.2012.12.005
- Quasi-Optimized Overlapping Schwarz Waveform Relaxation Algorithm for PDEs with Time-Delay, Communications in Computational Physics, Volume 14 (2013) no. 3, p. 780 | DOI:10.4208/cicp.100312.071112a
- Optimal Control of the Convergence Rate of Schwarz Waveform Relaxation Algorithms, Domain Decomposition Methods in Science and Engineering XX, Volume 91 (2013), p. 599 | DOI:10.1007/978-3-642-35275-1_71
- Optimized Schwarz Methods for the Bidomain system in electrocardiology, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 47 (2013) no. 2, p. 583 | DOI:10.1051/m2an/2012040
- Optimization of Schwarz waveform relaxation over short time windows, Numerical Algorithms, Volume 64 (2013) no. 2, p. 221 | DOI:10.1007/s11075-012-9662-y
- Time space domain decomposition for reactive transport, Procedia Computer Science, Volume 1 (2010) no. 1, p. 753 | DOI:10.1016/j.procs.2010.04.081
- Optimized Waveform Relaxation Methods for Longitudinal Partitioning of Transmission Lines, IEEE Transactions on Circuits and Systems I: Regular Papers, Volume 56 (2009) no. 8, p. 1732 | DOI:10.1109/tcsi.2008.2008286
- Optimized Schwarz Methods for Maxwell's Equations, SIAM Journal on Scientific Computing, Volume 31 (2009) no. 3, p. 2193 | DOI:10.1137/080728536
- Schwarz Waveform Relaxation Algorithms for the Linear Viscous Equatorial Shallow Water Equations, SIAM Journal on Scientific Computing, Volume 31 (2009) no. 5, p. 3595 | DOI:10.1137/070691450
- An Optimized Schwarz Waveform Relaxation Algorithm for Micro-Magnetics, Domain Decomposition Methods in Science and Engineering XVII, Volume 60 (2008), p. 203 | DOI:10.1007/978-3-540-75199-1_22
- Optimized Schwarz Waveform Relaxation Methods for Advection Reaction Diffusion Problems, SIAM Journal on Numerical Analysis, Volume 45 (2007) no. 2, p. 666 | DOI:10.1137/050642137
- A new domain decomposition method for the compressible Euler equations, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 40 (2006) no. 4, p. 689 | DOI:10.1051/m2an:2006026
- Optimized Schwarz Methods, SIAM Journal on Numerical Analysis, Volume 44 (2006) no. 2, p. 699 | DOI:10.1137/s0036142903425409
- An optimized Schwarz waveform relaxation method for the unsteady convection diffusion equation in two dimensions, Applied Numerical Mathematics, Volume 52 (2005) no. 4, p. 401 | DOI:10.1016/j.apnum.2004.08.022
- New trends in coupled simulations featuring domain decomposition and metacomputing, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 36 (2002) no. 5, p. 953 | DOI:10.1051/m2an:2002043
Cité par 21 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier