Comptes Rendus
Probability Theory
Local self-similarity and the Hausdorff dimension
[Auto-similarité locale et dimension de Hausdorff]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 3, pp. 267-272.

Soit X un processus stochastique localement auto-similaire d'exposant 0<H<1 dont les trajectoires sont p.s. CHε pour tout ε>0. Alors la dimension de Hausdorff du graphe de X est p.s. 2−H.

Let X be a locally self-similar stochastic process of index 0<H<1 whose sample paths are a.s. CHε for all ε>0. Then the Hausdorff dimension of the graph of X is a.s. 2−H.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00015-3

Albert Benassi 1 ; Serge Cohen 2 ; Jacques Istas 3

1 Université Blaise Pascal (Clermont-Ferrand II), LaMP, CNRS UPRESA 6016, 63177 Aubière cedex, France
2 Université Paul Sabatier, UFR MIG, Laboratoire de statistique et de probabilités, 118, route de Narbonne, 31062 Toulouse, France
3 Département IMSS, BSHM, Université Pierre Mendès-France, 38000 Grenoble, France
@article{CRMATH_2003__336_3_267_0,
     author = {Albert Benassi and Serge Cohen and Jacques Istas},
     title = {Local self-similarity and the {Hausdorff} dimension},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {267--272},
     publisher = {Elsevier},
     volume = {336},
     number = {3},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00015-3},
     language = {en},
}
TY  - JOUR
AU  - Albert Benassi
AU  - Serge Cohen
AU  - Jacques Istas
TI  - Local self-similarity and the Hausdorff dimension
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 267
EP  - 272
VL  - 336
IS  - 3
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00015-3
LA  - en
ID  - CRMATH_2003__336_3_267_0
ER  - 
%0 Journal Article
%A Albert Benassi
%A Serge Cohen
%A Jacques Istas
%T Local self-similarity and the Hausdorff dimension
%J Comptes Rendus. Mathématique
%D 2003
%P 267-272
%V 336
%N 3
%I Elsevier
%R 10.1016/S1631-073X(03)00015-3
%G en
%F CRMATH_2003__336_3_267_0
Albert Benassi; Serge Cohen; Jacques Istas. Local self-similarity and the Hausdorff dimension. Comptes Rendus. Mathématique, Volume 336 (2003) no. 3, pp. 267-272. doi : 10.1016/S1631-073X(03)00015-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00015-3/

[1] A. Ayache, F. Roueff, Hausdorff dimension of some random continuous graphs, Preprint, 2002

[2] A. Ayache, F. Roueff, Dimension de Hausdorff locale des séries aléatoires d'ondelettes, Seminar the Journées Fractals Aléatoires, Université Paris XII, Créteil, Septembre 2001

[3] A. Ayache, F. Roueff, A Fourier formulation of the Frostman criterion for random graphs and its applications to wavelet series, Letter to the editor, Appl. Comput. Harmonic Anal., to appear

[4] A. Benassi; S. Cohen; J. Istas Identifying the multifractional function of a Gaussian process, Statist. Probab. Lett., Volume 39 (1998), pp. 337-345

[5] A. Benassi; S. Cohen; J. Istas; S. Jaffard Identification of filtered white noises, Stochastics Process Appl., Volume 75 (1998), pp. 31-49

[6] A. Benassi; S. Cohen; J. Istas Identification and properties of real harmonizable fractional Lévy motions, Bernoulli, Volume 8 (2002), pp. 97-115

[7] A. Benassi; S. Jaffard; D. Roux Gaussian processes and pseudodifferential elliptic operators, Rev. Math. Iberoamericana, Volume 13 (1996) no. 1, pp. 19-90

[8] K. Falconer Fractal Geometry, Lecture Notes, Monograph Series, Wiley, 1990

[9] R. Peltier, J. Lévy-Vehel, Multifractional Brownian motion: definition and preliminary results, Rapport de recherche de l'INRIA 2645, 1995

[10] G. Samorodnitsky; M. Taqqu Stable Non-Gaussian Random Processes, Chapmann and Hall, 1994

  • Jakub Ślęzak; Ralf Metzler Minimal model of diffusion with time changing Hurst exponent, Journal of Physics A: Mathematical and Theoretical, Volume 56 (2023) no. 35, p. 35LT01 | DOI:10.1088/1751-8121/acecc7
  • Hermine Biermé Introduction to Random Fields and Scale Invariance, Stochastic Geometry, Volume 2237 (2019), p. 129 | DOI:10.1007/978-3-030-13547-8_4
  • Ercan Sönmez The Hausdorff dimension of multivariate operator-self-similar Gaussian random fields, Stochastic Processes and their Applications, Volume 128 (2018) no. 2, p. 426 | DOI:10.1016/j.spa.2017.05.003
  • Hans-Werner van Wyk; Max Gunzburger; John Burkhardt; Miroslav Stoyanov Power-Law Noises over General Spatial Domains and on Nonstandard Meshes, SIAM/ASA Journal on Uncertainty Quantification, Volume 3 (2015) no. 1, p. 296 | DOI:10.1137/140985433
  • Erick Herbin; Benjamin Arras; Geoffroy Barruel From almost sure local regularity to almost sure Hausdorff dimension for Gaussian fields, ESAIM: Probability and Statistics, Volume 18 (2014), p. 418 | DOI:10.1051/ps/2013044
  • Narn-Rueih Shieh; Yimin Xiao Hausdorff and packing dimensions of the images of random fields, Bernoulli, Volume 16 (2010) no. 4 | DOI:10.3150/09-bej244
  • S C Lim; L P Teo The fractional oscillator process with two indices, Journal of Physics A: Mathematical and Theoretical, Volume 42 (2009) no. 6, p. 065208 | DOI:10.1088/1751-8113/42/6/065208
  • Yimin Xiao A packing dimension theorem for Gaussian random fields, Statistics Probability Letters, Volume 79 (2009) no. 1, p. 88 | DOI:10.1016/j.spl.2008.07.022
  • Hermine Biermé; Céline Lacaux Hölder regularity for operator scaling stable random fields, Stochastic Processes and their Applications, Volume 119 (2009) no. 7, p. 2222 | DOI:10.1016/j.spa.2008.10.008
  • Brahim Boufoussi; Marco Dozzi; Raby Guerbaz Path properties of a class of locally asymptotically self similar processes, Electronic Journal of Probability, Volume 13 (2008) no. none | DOI:10.1214/ejp.v13-505
  • Ewaryst Rafajłowicz; Marek Wnuk; Wojciech Rafajłowicz Local Detection Of Defects From Image Sequences, International Journal of Applied Mathematics and Computer Science, Volume 18 (2008) no. 4, p. 581 | DOI:10.2478/v10006-008-0051-6
  • S.C. Lim; Ming Li; L.P. Teo Langevin equation with two fractional orders, Physics Letters A, Volume 372 (2008) no. 42, p. 6309 | DOI:10.1016/j.physleta.2008.08.045
  • S. C. LIM; MING LI; L. P. TEO LOCALLY SELF-SIMILAR FRACTIONAL OSCILLATOR PROCESSES, Fluctuation and Noise Letters, Volume 07 (2007) no. 02, p. L169 | DOI:10.1142/s0219477507003817
  • Hermine Biermé; Mark M. Meerschaert; Hans-Peter Scheffler Operator scaling stable random fields, Stochastic Processes and their Applications, Volume 117 (2007) no. 3, p. 312 | DOI:10.1016/j.spa.2006.07.004
  • Hermine Biermé; Anne Estrade Poisson random balls: self-similarity and X-ray images, Advances in Applied Probability, Volume 38 (2006) no. 4, p. 853 | DOI:10.1239/aap/1165414582
  • Céline Lacaux Fields with Exceptional Tangent Fields, Journal of Theoretical Probability, Volume 18 (2005) no. 2, p. 481 | DOI:10.1007/s10959-005-3516-7
  • E. Rafajlowicz Testing (Non-)Existence of Input–Output Relationships by Estimating Fractal Dimensions, IEEE Transactions on Signal Processing, Volume 52 (2004) no. 11, p. 3151 | DOI:10.1109/tsp.2004.836454
  • Antoine Ayache; François Roueff A Fourier formulation of the Frostman criterion for random graphs and its applications to wavelet series, Applied and Computational Harmonic Analysis, Volume 14 (2003) no. 1, p. 75 | DOI:10.1016/s1063-5203(03)00002-2

Cité par 18 documents. Sources : Crossref

Commentaires - Politique