Comptes Rendus
Group Theory/Geometry
Surface group representations with maximal Toledo invariant
[Sur les représentations d'un groupe de surface compacte avec invariant de Toledo maximal]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 5, pp. 387-390.

Nous étudions les représentations d'un groupe de surface compacte sur un espace symétrique hermitien et caractérisons celles avec invariant de Toledo maximal.

We study representations of compact surface groups on Hermitian symmetric spaces and characterize those with maximal Toledo invariant.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00065-7

Marc Burger 1 ; Alessandra Iozzi 2 ; Anna Wienhard 3

1 FIM, ETH Zentrum, CH-8092 Zürich, Switzerland
2 Department of Mathematics, ETH Zentrum, CH-8092 Zürich, Switzerland
3 Mathematisches Institut, Rheinische Friedrich-Wilhelms Universität Bonn, 53115 Bonn, Germany
@article{CRMATH_2003__336_5_387_0,
     author = {Marc Burger and Alessandra Iozzi and Anna Wienhard},
     title = {Surface group representations with maximal {Toledo} invariant},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {387--390},
     publisher = {Elsevier},
     volume = {336},
     number = {5},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00065-7},
     language = {en},
}
TY  - JOUR
AU  - Marc Burger
AU  - Alessandra Iozzi
AU  - Anna Wienhard
TI  - Surface group representations with maximal Toledo invariant
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 387
EP  - 390
VL  - 336
IS  - 5
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00065-7
LA  - en
ID  - CRMATH_2003__336_5_387_0
ER  - 
%0 Journal Article
%A Marc Burger
%A Alessandra Iozzi
%A Anna Wienhard
%T Surface group representations with maximal Toledo invariant
%J Comptes Rendus. Mathématique
%D 2003
%P 387-390
%V 336
%N 5
%I Elsevier
%R 10.1016/S1631-073X(03)00065-7
%G en
%F CRMATH_2003__336_5_387_0
Marc Burger; Alessandra Iozzi; Anna Wienhard. Surface group representations with maximal Toledo invariant. Comptes Rendus. Mathématique, Volume 336 (2003) no. 5, pp. 387-390. doi : 10.1016/S1631-073X(03)00065-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00065-7/

[1] A. Borel; J. Tits Eléments unipotents et sous-groupes paraboliques de groupes réductifs, I, Invent. Math., Volume 12 (1971), pp. 95-104

[2] S.B. Bradlow, O. Garcia–Prada, P.B. Gothen, Surface group representations, Higgs bundles, and holomorphic triples, Preprint, 2002, | arXiv

[3] M. Burger; A. Iozzi Boundary maps in bounded cohomology, Geom. Funct. Anal., Volume 12 (2002), pp. 281-292

[4] M. Burger, A. Iozzi, Bounded Kähler class rigidity of actions on Hermitian symmetric spaces, Preprint, 2002, http://www.math.ethz.ch/~iozzi/supq.ps

[5] M. Burger; N. Monod Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal., Volume 12 (2002), pp. 219-280

[6] J.L. Clerc; B. Ørsted The Maslov index revisited, Transformation Groups, Volume 6 (2001), pp. 303-320

[7] J.L. Clerc, B. Ørsted, The Gromov norm of the Kähler class and the Maslov index, Preprint, 2002

[8] A. Domic; D. Toledo The Gromov norm of the Kähler class of symmetric domains, Math. Ann., Volume 276 (1987), pp. 425-432

[9] W.M. Goldman, Discontinuous groups and the Euler class, Thesis, University of California at Berkeley, 1980

[10] L. Hernàndez Lamoneda Maximal representations of surface groups in bounded symmetric domains, Trans. Amer. Math. Soc., Volume 324 (1991), pp. 405-420

[11] S. Ihara Holomorphic imbeddings of symmetric domains, J. Math. Soc. Japan, Volume 19 (1967) no. 3

[12] A. Iozzi Bounded cohomology, boundary maps, and representations into Homeo+(S1) and SU(1,n), Rigidity in Dynamics and Geometry, Cambridge, UK, 2000, Springer-Verlag, Heidelberg, 2000, pp. 237-260

[13] N. Monod Continuous bounded cohomology of locally compact groups, Lecture Notes in Math., 1758, Springer-Verlag, Heidelberg, 2001

[14] I. Satake Holomorphic imbeddings of symmetric domains into a Siegel space, Amer. J. Math., Volume 87 (1965), pp. 425-461

[15] D. Toledo Representations of surface groups in complex hyperbolic space, J. Differential Geom., Volume 29 (1989), pp. 125-133

Cité par Sources :

Commentaires - Politique