Comptes Rendus
Group Theory/Geometry
Surface group representations with maximal Toledo invariant
[Sur les représentations d'un groupe de surface compacte avec invariant de Toledo maximal]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 5, pp. 387-390.

Nous étudions les représentations d'un groupe de surface compacte sur un espace symétrique hermitien et caractérisons celles avec invariant de Toledo maximal.

We study representations of compact surface groups on Hermitian symmetric spaces and characterize those with maximal Toledo invariant.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00065-7

Marc Burger 1 ; Alessandra Iozzi 2 ; Anna Wienhard 3

1 FIM, ETH Zentrum, CH-8092 Zürich, Switzerland
2 Department of Mathematics, ETH Zentrum, CH-8092 Zürich, Switzerland
3 Mathematisches Institut, Rheinische Friedrich-Wilhelms Universität Bonn, 53115 Bonn, Germany
@article{CRMATH_2003__336_5_387_0,
     author = {Marc Burger and Alessandra Iozzi and Anna Wienhard},
     title = {Surface group representations with maximal {Toledo} invariant},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {387--390},
     publisher = {Elsevier},
     volume = {336},
     number = {5},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00065-7},
     language = {en},
}
TY  - JOUR
AU  - Marc Burger
AU  - Alessandra Iozzi
AU  - Anna Wienhard
TI  - Surface group representations with maximal Toledo invariant
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 387
EP  - 390
VL  - 336
IS  - 5
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00065-7
LA  - en
ID  - CRMATH_2003__336_5_387_0
ER  - 
%0 Journal Article
%A Marc Burger
%A Alessandra Iozzi
%A Anna Wienhard
%T Surface group representations with maximal Toledo invariant
%J Comptes Rendus. Mathématique
%D 2003
%P 387-390
%V 336
%N 5
%I Elsevier
%R 10.1016/S1631-073X(03)00065-7
%G en
%F CRMATH_2003__336_5_387_0
Marc Burger; Alessandra Iozzi; Anna Wienhard. Surface group representations with maximal Toledo invariant. Comptes Rendus. Mathématique, Volume 336 (2003) no. 5, pp. 387-390. doi : 10.1016/S1631-073X(03)00065-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00065-7/

[1] A. Borel; J. Tits Eléments unipotents et sous-groupes paraboliques de groupes réductifs, I, Invent. Math., Volume 12 (1971), pp. 95-104

[2] S.B. Bradlow, O. Garcia–Prada, P.B. Gothen, Surface group representations, Higgs bundles, and holomorphic triples, Preprint, 2002, | arXiv

[3] M. Burger; A. Iozzi Boundary maps in bounded cohomology, Geom. Funct. Anal., Volume 12 (2002), pp. 281-292

[4] M. Burger, A. Iozzi, Bounded Kähler class rigidity of actions on Hermitian symmetric spaces, Preprint, 2002, http://www.math.ethz.ch/~iozzi/supq.ps

[5] M. Burger; N. Monod Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal., Volume 12 (2002), pp. 219-280

[6] J.L. Clerc; B. Ørsted The Maslov index revisited, Transformation Groups, Volume 6 (2001), pp. 303-320

[7] J.L. Clerc, B. Ørsted, The Gromov norm of the Kähler class and the Maslov index, Preprint, 2002

[8] A. Domic; D. Toledo The Gromov norm of the Kähler class of symmetric domains, Math. Ann., Volume 276 (1987), pp. 425-432

[9] W.M. Goldman, Discontinuous groups and the Euler class, Thesis, University of California at Berkeley, 1980

[10] L. Hernàndez Lamoneda Maximal representations of surface groups in bounded symmetric domains, Trans. Amer. Math. Soc., Volume 324 (1991), pp. 405-420

[11] S. Ihara Holomorphic imbeddings of symmetric domains, J. Math. Soc. Japan, Volume 19 (1967) no. 3

[12] A. Iozzi Bounded cohomology, boundary maps, and representations into Homeo+(S1) and SU(1,n), Rigidity in Dynamics and Geometry, Cambridge, UK, 2000, Springer-Verlag, Heidelberg, 2000, pp. 237-260

[13] N. Monod Continuous bounded cohomology of locally compact groups, Lecture Notes in Math., 1758, Springer-Verlag, Heidelberg, 2001

[14] I. Satake Holomorphic imbeddings of symmetric domains into a Siegel space, Amer. J. Math., Volume 87 (1965), pp. 425-461

[15] D. Toledo Representations of surface groups in complex hyperbolic space, J. Differential Geom., Volume 29 (1989), pp. 125-133

  • Olivier Biquard; Brian Collier; Oscar García-Prada; Domingo Toledo Arakelov–Milnor inequalities and maximal variations of Hodge structure, Compositio Mathematica, Volume 159 (2023) no. 5, p. 1005 | DOI:10.1112/s0010437x23007157
  • Pengfei Huang Non-Abelian Hodge Theory and Related Topics, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, Volume 16 (2020) | DOI:10.3842/sigma.2020.029
  • Qiongling Li An Introduction to Higgs Bundles via Harmonic Maps, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, Volume 15 (2019) | DOI:10.3842/sigma.2019.035
  • Brian Collier Studying Deformations of Fuchsian Representations with Higgs Bundles, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, Volume 15 (2019) | DOI:10.3842/sigma.2019.010
  • Jérémy Toulisse Higgs bundles, pseudo-hyperbolic geometry and maximal representations, Séminaire de théorie spectrale et géométrie, Volume 34 (2017), p. 97 | DOI:10.5802/tsg.357
  • Tengren Zhang Degeneration of Hitchin representations along internal sequences, Geometric and Functional Analysis, Volume 25 (2015) no. 5, p. 1588 | DOI:10.1007/s00039-015-0342-7
  • Peter B. Gothen Representations of surface groups and Higgs bundles, Moduli Spaces (2014), p. 151 | DOI:10.1017/cbo9781107279544.004
  • Michelle Bucher; Marc Burger; Alessandra Iozzi A Dual Interpretation of the Gromov–Thurston Proof of Mostow Rigidity and Volume Rigidity for Representations of Hyperbolic Lattices, Trends in Harmonic Analysis, Volume 3 (2013), p. 47 | DOI:10.1007/978-88-470-2853-1_4
  • MARC BURGER; ALESSANDRA IOZZI Bounded cohomology and totally real subspaces in complex hyperbolic geometry, Ergodic Theory and Dynamical Systems, Volume 32 (2012) no. 2, p. 467 | DOI:10.1017/s0143385711000393
  • Inkang Kim; Pierre Pansu Flexibility of surface groups in classical groups, arXiv (2011) | DOI:10.48550/arxiv.1101.1159 | arXiv:1101.1159
  • Marc Burger; Alessandra Iozzi; Anna Wienhard Surface group representations with maximal Toledo invariant, Annals of Mathematics, Volume 172 (2010) no. 1, p. 517 | DOI:10.4007/annals.2010.172.517
  • Nicolas Monod On the bounded cohomology of semi-simple groups, S-arithmetic groups and products, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2010 (2010) no. 640 | DOI:10.1515/crelle.2010.024
  • William M. Goldman Locally homogeneous geometric manifolds, arXiv (2010) | DOI:10.48550/arxiv.1003.2759 | arXiv:1003.2759
  • Inkang Kim; Pierre Pansu Density of Zariski density for surface groups, arXiv (2010) | DOI:10.48550/arxiv.1009.2258 | arXiv:1009.2258
  • Marc Burger; Alessandra Iozzi; Anna Wienhard Tight Homomorphisms and Hermitian Symmetric Spaces, Geometric and Functional Analysis, Volume 19 (2009) no. 3, p. 678 | DOI:10.1007/s00039-009-0020-8
  • Danny Calegari Faces of the scl norm ball, Geometry Topology, Volume 13 (2009) no. 3, p. 1313 | DOI:10.2140/gt.2009.13.1313
  • Adam S. Sikora Character Varieties, arXiv (2009) | DOI:10.48550/arxiv.0902.2589 | arXiv:0902.2589
  • Vincent Koziarz; Julien Maubon Representations of complex hyperbolic lattices into rank 2 classical Lie groups of Hermitian type, Geometriae Dedicata, Volume 137 (2008) no. 1, p. 85 | DOI:10.1007/s10711-008-9288-3
  • Mike Krebs Toledo invariants of 2-orbifolds and Higgs bundles on elliptic surfaces, Michigan Mathematical Journal, Volume 56 (2008) no. 1 | DOI:10.1307/mmj/1213972395
  • William M. Goldman Higgs Bundles and Geometric Structures on Surfaces, arXiv (2008) | DOI:10.48550/arxiv.0805.1793 | arXiv:0805.1793
  • Danny Calegari Faces of the scl norm ball, arXiv (2008) | DOI:10.48550/arxiv.0807.0395 | arXiv:0807.0395
  • Stephen Wang Representations of surface groups and right-angled Artin groups in higher rank, Algebraic Geometric Topology, Volume 7 (2007) no. 2, p. 1099 | DOI:10.2140/agt.2007.7.1099
  • Steven B. Bradlow; Oscar García-Prada; Peter B. Gothen Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces, Geometriae Dedicata, Volume 122 (2007) no. 1, p. 185 | DOI:10.1007/s10711-007-9127-y
  • Marc Burger; Alessandra Iozzi Bounded differential forms, generalized Milnor–Wood inequality and an application to deformation rigidity, Geometriae Dedicata, Volume 125 (2007) no. 1, p. 1 | DOI:10.1007/s10711-006-9108-6
  • François Labourie Cross ratios, surface groups, PSL(n,ℝ) and diffeomorphisms of the circle, Publications mathématiques de l'IHÉS, Volume 106 (2007) no. 1, p. 139 | DOI:10.1007/s10240-007-0009-5
  • D. Burago; S. Ivanov; L. Polterovich Conjugation-invariant norms on groups of geometric origin, arXiv (2007) | DOI:10.48550/arxiv.0710.1412 | arXiv:0710.1412
  • Vincent Koziarz; Julien Maubon Representations of complex hyperbolic lattices into rank 2 classical Lie groups of Hermitian type, arXiv (2007) | DOI:10.48550/arxiv.math/0703174 | arXiv:math/0703174
  • Marc Burger; Alessandra Iozzi; Anna Wienhard Tight homomorphisms and Hermitian symmetric spaces, arXiv (2007) | DOI:10.48550/arxiv.0710.5641 | arXiv:0710.5641
  • Inkang Kim; Pierre Pansu Local rigidity in quaternionic hyperbolic space, arXiv (2007) | DOI:10.48550/arxiv.0708.2182 | arXiv:0708.2182
  • Anna Wienhard The Action of the Mapping Class Group on Maximal Representations, Geometriae Dedicata, Volume 120 (2006) no. 1, p. 179 | DOI:10.1007/s10711-006-9079-7
  • François Labourie Anosov flows, surface groups and curves in projective space, Inventiones mathematicae, Volume 165 (2006) no. 1, p. 51 | DOI:10.1007/s00222-005-0487-3
  • Carlos T. Simpson Katz's middle convolution algorithm, arXiv (2006) | DOI:10.48550/arxiv.math/0610526 | arXiv:math/0610526
  • Steven B. Bradlow; Oscar Garcia-Prada; Peter B. Gothen Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces, arXiv (2005) | DOI:10.48550/arxiv.math/0511415 | arXiv:math/0511415

Cité par 33 documents. Sources : Crossref, NASA ADS

Commentaires - Politique