[Sur les représentations d'un groupe de surface compacte avec invariant de Toledo maximal]
Nous étudions les représentations d'un groupe de surface compacte sur un espace symétrique hermitien et caractérisons celles avec invariant de Toledo maximal.
We study representations of compact surface groups on Hermitian symmetric spaces and characterize those with maximal Toledo invariant.
Accepté le :
Publié le :
Marc Burger 1 ; Alessandra Iozzi 2 ; Anna Wienhard 3
@article{CRMATH_2003__336_5_387_0, author = {Marc Burger and Alessandra Iozzi and Anna Wienhard}, title = {Surface group representations with maximal {Toledo} invariant}, journal = {Comptes Rendus. Math\'ematique}, pages = {387--390}, publisher = {Elsevier}, volume = {336}, number = {5}, year = {2003}, doi = {10.1016/S1631-073X(03)00065-7}, language = {en}, }
TY - JOUR AU - Marc Burger AU - Alessandra Iozzi AU - Anna Wienhard TI - Surface group representations with maximal Toledo invariant JO - Comptes Rendus. Mathématique PY - 2003 SP - 387 EP - 390 VL - 336 IS - 5 PB - Elsevier DO - 10.1016/S1631-073X(03)00065-7 LA - en ID - CRMATH_2003__336_5_387_0 ER -
Marc Burger; Alessandra Iozzi; Anna Wienhard. Surface group representations with maximal Toledo invariant. Comptes Rendus. Mathématique, Volume 336 (2003) no. 5, pp. 387-390. doi : 10.1016/S1631-073X(03)00065-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00065-7/
[1] Eléments unipotents et sous-groupes paraboliques de groupes réductifs, I, Invent. Math., Volume 12 (1971), pp. 95-104
[2] S.B. Bradlow, O. Garcia–Prada, P.B. Gothen, Surface group representations, Higgs bundles, and holomorphic triples, Preprint, 2002, | arXiv
[3] Boundary maps in bounded cohomology, Geom. Funct. Anal., Volume 12 (2002), pp. 281-292
[4] M. Burger, A. Iozzi, Bounded Kähler class rigidity of actions on Hermitian symmetric spaces, Preprint, 2002, http://www.math.ethz.ch/~iozzi/supq.ps
[5] Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal., Volume 12 (2002), pp. 219-280
[6] The Maslov index revisited, Transformation Groups, Volume 6 (2001), pp. 303-320
[7] J.L. Clerc, B. Ørsted, The Gromov norm of the Kähler class and the Maslov index, Preprint, 2002
[8] The Gromov norm of the Kähler class of symmetric domains, Math. Ann., Volume 276 (1987), pp. 425-432
[9] W.M. Goldman, Discontinuous groups and the Euler class, Thesis, University of California at Berkeley, 1980
[10] Maximal representations of surface groups in bounded symmetric domains, Trans. Amer. Math. Soc., Volume 324 (1991), pp. 405-420
[11] Holomorphic imbeddings of symmetric domains, J. Math. Soc. Japan, Volume 19 (1967) no. 3
[12] Bounded cohomology, boundary maps, and representations into Homeo+(S1) and SU(1,n), Rigidity in Dynamics and Geometry, Cambridge, UK, 2000, Springer-Verlag, Heidelberg, 2000, pp. 237-260
[13] Continuous bounded cohomology of locally compact groups, Lecture Notes in Math., 1758, Springer-Verlag, Heidelberg, 2001
[14] Holomorphic imbeddings of symmetric domains into a Siegel space, Amer. J. Math., Volume 87 (1965), pp. 425-461
[15] Representations of surface groups in complex hyperbolic space, J. Differential Geom., Volume 29 (1989), pp. 125-133
- Arakelov–Milnor inequalities and maximal variations of Hodge structure, Compositio Mathematica, Volume 159 (2023) no. 5, p. 1005 | DOI:10.1112/s0010437x23007157
- Non-Abelian Hodge Theory and Related Topics, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, Volume 16 (2020) | DOI:10.3842/sigma.2020.029
- An Introduction to Higgs Bundles via Harmonic Maps, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, Volume 15 (2019) | DOI:10.3842/sigma.2019.035
- Studying Deformations of Fuchsian Representations with Higgs Bundles, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, Volume 15 (2019) | DOI:10.3842/sigma.2019.010
- Higgs bundles, pseudo-hyperbolic geometry and maximal representations, Séminaire de théorie spectrale et géométrie, Volume 34 (2017), p. 97 | DOI:10.5802/tsg.357
- Degeneration of Hitchin representations along internal sequences, Geometric and Functional Analysis, Volume 25 (2015) no. 5, p. 1588 | DOI:10.1007/s00039-015-0342-7
- Representations of surface groups and Higgs bundles, Moduli Spaces (2014), p. 151 | DOI:10.1017/cbo9781107279544.004
- A Dual Interpretation of the Gromov–Thurston Proof of Mostow Rigidity and Volume Rigidity for Representations of Hyperbolic Lattices, Trends in Harmonic Analysis, Volume 3 (2013), p. 47 | DOI:10.1007/978-88-470-2853-1_4
- Bounded cohomology and totally real subspaces in complex hyperbolic geometry, Ergodic Theory and Dynamical Systems, Volume 32 (2012) no. 2, p. 467 | DOI:10.1017/s0143385711000393
- Flexibility of surface groups in classical groups, arXiv (2011) | DOI:10.48550/arxiv.1101.1159 | arXiv:1101.1159
- Surface group representations with maximal Toledo invariant, Annals of Mathematics, Volume 172 (2010) no. 1, p. 517 | DOI:10.4007/annals.2010.172.517
- On the bounded cohomology of semi-simple groups, S-arithmetic groups and products, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2010 (2010) no. 640 | DOI:10.1515/crelle.2010.024
- Locally homogeneous geometric manifolds, arXiv (2010) | DOI:10.48550/arxiv.1003.2759 | arXiv:1003.2759
- Density of Zariski density for surface groups, arXiv (2010) | DOI:10.48550/arxiv.1009.2258 | arXiv:1009.2258
- Tight Homomorphisms and Hermitian Symmetric Spaces, Geometric and Functional Analysis, Volume 19 (2009) no. 3, p. 678 | DOI:10.1007/s00039-009-0020-8
- Faces of the scl norm ball, Geometry Topology, Volume 13 (2009) no. 3, p. 1313 | DOI:10.2140/gt.2009.13.1313
- Character Varieties, arXiv (2009) | DOI:10.48550/arxiv.0902.2589 | arXiv:0902.2589
- Representations of complex hyperbolic lattices into rank 2 classical Lie groups of Hermitian type, Geometriae Dedicata, Volume 137 (2008) no. 1, p. 85 | DOI:10.1007/s10711-008-9288-3
- Toledo invariants of 2-orbifolds and Higgs bundles on elliptic surfaces, Michigan Mathematical Journal, Volume 56 (2008) no. 1 | DOI:10.1307/mmj/1213972395
- Higgs Bundles and Geometric Structures on Surfaces, arXiv (2008) | DOI:10.48550/arxiv.0805.1793 | arXiv:0805.1793
- Faces of the scl norm ball, arXiv (2008) | DOI:10.48550/arxiv.0807.0395 | arXiv:0807.0395
- Representations of surface groups and right-angled Artin groups in higher rank, Algebraic Geometric Topology, Volume 7 (2007) no. 2, p. 1099 | DOI:10.2140/agt.2007.7.1099
- Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces, Geometriae Dedicata, Volume 122 (2007) no. 1, p. 185 | DOI:10.1007/s10711-007-9127-y
- Bounded differential forms, generalized Milnor–Wood inequality and an application to deformation rigidity, Geometriae Dedicata, Volume 125 (2007) no. 1, p. 1 | DOI:10.1007/s10711-006-9108-6
- Cross ratios, surface groups, PSL(n,ℝ) and diffeomorphisms of the circle, Publications mathématiques de l'IHÉS, Volume 106 (2007) no. 1, p. 139 | DOI:10.1007/s10240-007-0009-5
- Conjugation-invariant norms on groups of geometric origin, arXiv (2007) | DOI:10.48550/arxiv.0710.1412 | arXiv:0710.1412
- Representations of complex hyperbolic lattices into rank 2 classical Lie groups of Hermitian type, arXiv (2007) | DOI:10.48550/arxiv.math/0703174 | arXiv:math/0703174
- Tight homomorphisms and Hermitian symmetric spaces, arXiv (2007) | DOI:10.48550/arxiv.0710.5641 | arXiv:0710.5641
- Local rigidity in quaternionic hyperbolic space, arXiv (2007) | DOI:10.48550/arxiv.0708.2182 | arXiv:0708.2182
- The Action of the Mapping Class Group on Maximal Representations, Geometriae Dedicata, Volume 120 (2006) no. 1, p. 179 | DOI:10.1007/s10711-006-9079-7
- Anosov flows, surface groups and curves in projective space, Inventiones mathematicae, Volume 165 (2006) no. 1, p. 51 | DOI:10.1007/s00222-005-0487-3
- Katz's middle convolution algorithm, arXiv (2006) | DOI:10.48550/arxiv.math/0610526 | arXiv:math/0610526
- Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces, arXiv (2005) | DOI:10.48550/arxiv.math/0511415 | arXiv:math/0511415
Cité par 33 documents. Sources : Crossref, NASA ADS
Commentaires - Politique