Comptes Rendus
Geometry/Topology
Domains of discontinuity for surface groups
[Quotients compacts et groupes de surfaces]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1057-1060.

Soit π1(Σ) le groupe fondamental d'une surface de Riemann connexe, fermée et de genre supérieur et soit G un groupe de Lie semi-simple. Pour toute représentation Anosov ρ:π1(Σ)G, nous construisons un ouvert de la variété drapeau G/Q sur lequel π1(Σ) agit proprement avec quotient compact.

Let Σ be a closed connected orientable surface of negative Euler characteristic and G a semisimple Lie group. For any Anosov representation ρ:π1(Σ)G we construct domains of discontinuity with compact quotient for the action of π1(Σ) on flag varieties G/Q.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.06.013

Olivier Guichard 1, 2 ; Anna Wienhard 3

1 CNRS, laboratoire de mathématiques d'Orsay, 91405 Orsay cedex, France
2 Université Paris-Sud, 91405 Orsay cedex, France
3 Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000, USA
@article{CRMATH_2009__347_17-18_1057_0,
     author = {Olivier Guichard and Anna Wienhard},
     title = {Domains of discontinuity for surface groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1057--1060},
     publisher = {Elsevier},
     volume = {347},
     number = {17-18},
     year = {2009},
     doi = {10.1016/j.crma.2009.06.013},
     language = {en},
}
TY  - JOUR
AU  - Olivier Guichard
AU  - Anna Wienhard
TI  - Domains of discontinuity for surface groups
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1057
EP  - 1060
VL  - 347
IS  - 17-18
PB  - Elsevier
DO  - 10.1016/j.crma.2009.06.013
LA  - en
ID  - CRMATH_2009__347_17-18_1057_0
ER  - 
%0 Journal Article
%A Olivier Guichard
%A Anna Wienhard
%T Domains of discontinuity for surface groups
%J Comptes Rendus. Mathématique
%D 2009
%P 1057-1060
%V 347
%N 17-18
%I Elsevier
%R 10.1016/j.crma.2009.06.013
%G en
%F CRMATH_2009__347_17-18_1057_0
Olivier Guichard; Anna Wienhard. Domains of discontinuity for surface groups. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1057-1060. doi : 10.1016/j.crma.2009.06.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.06.013/

[1] T. Barbot Three-dimensional Anosov flag manifolds, 2005 | arXiv

[2] T. Barbot Quasi-Fuchsian AdS representations are Anosov, 2007 | arXiv

[3] M. Burger, A. Iozzi, A. Wienhard, Maximal representations and Anosov structures, in preparation

[4] M. Burger; A. Iozzi; F. Labourie; A. Wienhard Maximal representations of surface groups: Symplectic Anosov structures, Pure and Applied Mathematics Quarterly. Special Issue: In Memory of Armand Borel, Volume 1 (2005) no. 2, pp. 555-601

[5] V. Fock; A. Goncharov Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci., Volume 103 (2006), pp. 1-211

[6] W. Fulton; J. Harris Representation Theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991

[7] O. Guichard Composantes de Hitchin et représentations hyperconvexes de groupes de surface, J. Differential Geom., Volume 80 (2008) no. 3, pp. 391-431

[8] O. Guichard; A. Wienhard Topological invariants of Anosov representations, 2009 | arXiv

[9] N. Hitchin Lie groups and Teichmüller space, Topology, Volume 31 (1992) no. 3, pp. 449-473

[10] F. Labourie Anosov flows, surface groups and curves in projective space, Invent. Math., Volume 165 (2006) no. 1, pp. 51-114

[11] Q. Mérigot Anosov AdS representations are quasi-Fuchsian, 2007 | arXiv

Cité par Sources :

Commentaires - Politique