Comptes Rendus
Géométrie et Topologie
The real spectrum compactification of character varieties: characterizations and applications
[La compactification des variétés de caractères par le spectre réel : caractérisations et applications]
Comptes Rendus. Mathématique, Volume 359 (2021) no. 4, pp. 439-463.

Cette annonce est un survol de nos résultats concernant la compactification de variétés de caractères par le spectre réel. Nous relions cette compactification à celle obtenue par les fonctions longeurs à valeurs dans une chambre de Weyl et donnons des applications aux représentations maximales et de Hitchin.

We announce results on a compactification of general character varieties that has good topological properties and give various interpretations of its ideal points. We relate this to the Weyl chamber length compactification and apply our results to the theory of maximal and Hitchin representations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.123

Marc Burger 1 ; Alessandra Iozzi 1 ; Anne Parreau 2 ; Maria Beatrice Pozzetti 3

1 Departement Mathematik, ETHZ, Rämistrasse 101, CH-8092 Zürich, Switzerland
2 Univ. Grenoble Alpes, CNRS, Institut Fourier, F-38000 Grenoble, France
3 Mathematical Institute, Heidelberg University, Im Neuenheimer feld 205, 69120 Heidelberg, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2021__359_4_439_0,
     author = {Marc Burger and Alessandra Iozzi and Anne Parreau and Maria Beatrice Pozzetti},
     title = {The real spectrum compactification of character varieties: characterizations and applications},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {439--463},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {4},
     year = {2021},
     doi = {10.5802/crmath.123},
     zbl = {07362165},
     language = {en},
}
TY  - JOUR
AU  - Marc Burger
AU  - Alessandra Iozzi
AU  - Anne Parreau
AU  - Maria Beatrice Pozzetti
TI  - The real spectrum compactification of character varieties: characterizations and applications
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 439
EP  - 463
VL  - 359
IS  - 4
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.123
LA  - en
ID  - CRMATH_2021__359_4_439_0
ER  - 
%0 Journal Article
%A Marc Burger
%A Alessandra Iozzi
%A Anne Parreau
%A Maria Beatrice Pozzetti
%T The real spectrum compactification of character varieties: characterizations and applications
%J Comptes Rendus. Mathématique
%D 2021
%P 439-463
%V 359
%N 4
%I Académie des sciences, Paris
%R 10.5802/crmath.123
%G en
%F CRMATH_2021__359_4_439_0
Marc Burger; Alessandra Iozzi; Anne Parreau; Maria Beatrice Pozzetti. The real spectrum compactification of character varieties: characterizations and applications. Comptes Rendus. Mathématique, Volume 359 (2021) no. 4, pp. 439-463. doi : 10.5802/crmath.123. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.123/

[1] R. Appenzeller The generalized buiildings for symmetric spaces of algebraic groups, 2021 (preprint)

[2] Jacek Bochnak; Michel Coste; Marie-Françoise Roy Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 36, Springer, 1998, x+430 pages (Translated from the 1987 French original, Revised by the authors) | DOI | MR | Zbl

[3] Christoph Böhm; Ramiro A. Lafuente Real geometric invariant theory (2017) (https://arxiv.org/abs/1701.00643) | Zbl

[4] Francis Bonahon The geometry of Teichmüller space via geodesic currents, Invent. Math., Volume 92 (1988) no. 1, pp. 139-162 | DOI | MR | Zbl

[5] Francis Bonahon; Guillaume Dreyer Parameterizing Hitchin components, Duke Math. J., Volume 163 (2014) no. 15, pp. 2935-2975 | DOI | MR | Zbl

[6] Nicolas Bourbaki Commutative algebra. Chapters 1–7, Elements of Mathematics, Springer, 1998, xxiv+625 pages (Translated from the French, Reprint of the 1989 English translation) | MR | Zbl

[7] Taoufik Bouzoubaa Compactification via le spectre réel d’espaces des classes de représentations dans SO (n,1), Ann. Inst. Fourier, Volume 44 (1994) no. 2, pp. 347-385 | DOI | MR | Zbl

[8] Gregory W. Brumfiel The real spectrum compactification of Teichmüller space, Geometry of group representations (Boulder, CO, 1987) (Contemporary Mathematics), Volume 74, American Mathematical Society, 1988, pp. 51-75 | DOI | MR | Zbl

[9] Gregory W. Brumfiel A semi-algebraic Brouwer fixed point theorem for real affine space, Geometry of group representations (Boulder, CO, 1987) (Contemporary Mathematics), Volume 74, American Mathematical Society, 1988, pp. 77-82 | DOI | MR | Zbl

[10] Gregory W. Brumfiel The ultrafilter theorem in real algebraic geometry, Rocky Mt. J. Math., Volume 19 (1989) no. 3, pp. 611-628 Quadratic forms and real algebraic geometry (Corvallis, OR, 1986) | DOI | MR | Zbl

[11] Gregory W. Brumfiel A Hopf fixed point theorem for semi-algebraic maps, Real algebraic geometry (Rennes, 1991) (Lecture Notes in Mathematics), Volume 1524, Springer, 1992, pp. 163-169 | DOI | MR | Zbl

[12] Marc Burger; Alessandra Iozzi; Anne Parreau; Maria Beatrice Pozzetti Currents, systoles and compactifications of character varieties (2019) (https://arxiv.org/abs/1902.07680, submitted) | Zbl

[13] Marc Burger; Alessandra Iozzi; Anne Parreau; Maria Beatrice Pozzetti Positive crossratios, barycenters, trees and applications to maximal representations, 2021 (https://arxiv.org/abs/2103.17161, preprint in preliminary version,) | Zbl

[14] Marc Burger; Alessandra Iozzi; Anne Parreau; Maria Beatrice Pozzetti The real spectrum compactification of character varieties, 2021 (preprint in preliminary version) | Zbl

[15] Marc Burger; Alessandra Iozzi; Anne Parreau; Maria Beatrice Pozzetti Real spectrum of maximal character varieties, 2021 (in preparation) | Zbl

[16] Marc Burger; Alessandra Iozzi; Anna Wienhard Surface group representations with maximal Toledo invariant, Ann. Math., Volume 172 (2010) no. 1, pp. 517-566 | DOI | MR | Zbl

[17] Marc Burger; Maria Beatrice Pozzetti Maximal representations, non-Archimedean Siegel spaces, and buildings, Geom. Topol., Volume 21 (2017) no. 6, pp. 3539-3599 | DOI | MR | Zbl

[18] Thomas Delzant; Olivier Guichard; François Labourie; Shahar Mozes Displacing representations and orbit maps, Geometry, rigidity, and group actions (Chicago Lectures in Mathematics), University of Chicago Press, 2011, pp. 494-514 | MR | Zbl

[19] Ursula Hamenstädt Cocycles, Hausdorff measures and cross ratios, Ergodic Theory Dyn. Syst., Volume 17 (1997) no. 5, pp. 1061-1081 | DOI | MR | Zbl

[20] Ursula Hamenstädt Geometry of the mapping class groups. I. Boundary amenability, Invent. Math., Volume 175 (2009) no. 3, pp. 545-609 | DOI | MR | Zbl

[21] Nicholas J. Korevaar; Richard M. Schoen Global existence theorems for harmonic maps to non-locally compact spaces, Commun. Anal. Geom., Volume 5 (1997) no. 2, pp. 333-387 | DOI | MR | Zbl

[22] Linus Kramer; Katrin Tent Ultrapowers of Lie groups, a question of Gromov, and the Margulis conjecture, Essays in geometric group theory (Ramanujan Mathematical Society Lecture Notes Series), Volume 9, Ramanujan Mathematical Society, 2009, pp. 61-77 | MR | Zbl

[23] François Labourie Cross ratios, Anosov representations and the energy functional on Teichmüller space., Ann. Sci. Éc. Norm. Supér., Volume 41 (2008) no. 3, pp. 439-471 | DOI | Numdam | Zbl

[24] J. Loftin; A. Tamburelli; M. Wolf (oral communication)

[25] B. Martelli An introduction to geometric topology, CreateSpace Independent Publishing Platform, 2016, 488 pages

[26] Giuseppe Martone; Tengren Zhang Positively ratioed representations, Comment. Math. Helv., Volume 94 (2019) no. 2, pp. 273-345 | DOI | MR | Zbl

[27] John W. Morgan Λ-trees and their applications, Bull. Am. Math. Soc., Volume 26 (1992) no. 1, pp. 87-112 | DOI | MR

[28] Anne Parreau Compactification d’espaces de représentations de groupes de type fini, Math. Z., Volume 272 (2012) no. 1-2, pp. 51-86 | DOI | MR | Zbl

[29] Pierre Planche Structures de Finsler invariantes sur les espaces symétriques, C. R. Math. Acad. Sci. Paris, Volume 321 (1995) no. 11, pp. 1455-1458 | MR | Zbl

[30] Roger W. Richardson; Peter J. Slodowy Minimum vectors for real reductive algebraic groups, J. Lond. Math. Soc., Volume 42 (1990) no. 3, pp. 409-429 | DOI | MR | Zbl

[31] Tobias Strubel Fenchel–Nielsen coordinates for maximal representations, Geom. Dedicata, Volume 176 (2015), pp. 45-86 | DOI | MR | Zbl

[32] Richard A. Wentworth Energy of harmonic maps and Gardiner’s formula, In the tradition of Ahlfors–Bers. IV (Contemporary Mathematics), Volume 432, American Mathematical Society, 2007, pp. 221-229 | DOI | MR | Zbl

[33] Maxime Wolff Connected components of the compactification of representation spaces of surface groups, Geom. Topol., Volume 15 (2011) no. 3, pp. 1225-1295 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique