[La compactification des variétés de caractères par le spectre réel : caractérisations et applications]
Cette annonce est un survol de nos résultats concernant la compactification de variétés de caractères par le spectre réel. Nous relions cette compactification à celle obtenue par les fonctions longeurs à valeurs dans une chambre de Weyl et donnons des applications aux représentations maximales et de Hitchin.
We announce results on a compactification of general character varieties that has good topological properties and give various interpretations of its ideal points. We relate this to the Weyl chamber length compactification and apply our results to the theory of maximal and Hitchin representations.
Accepté le :
Publié le :
DOI : 10.5802/crmath.123
Marc Burger 1 ; Alessandra Iozzi 1 ; Anne Parreau 2 ; Maria Beatrice Pozzetti 3
@article{CRMATH_2021__359_4_439_0, author = {Marc Burger and Alessandra Iozzi and Anne Parreau and Maria Beatrice Pozzetti}, title = {The real spectrum compactification of character varieties: characterizations and applications}, journal = {Comptes Rendus. Math\'ematique}, pages = {439--463}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {4}, year = {2021}, doi = {10.5802/crmath.123}, zbl = {07362165}, language = {en}, }
TY - JOUR AU - Marc Burger AU - Alessandra Iozzi AU - Anne Parreau AU - Maria Beatrice Pozzetti TI - The real spectrum compactification of character varieties: characterizations and applications JO - Comptes Rendus. Mathématique PY - 2021 SP - 439 EP - 463 VL - 359 IS - 4 PB - Académie des sciences, Paris DO - 10.5802/crmath.123 LA - en ID - CRMATH_2021__359_4_439_0 ER -
%0 Journal Article %A Marc Burger %A Alessandra Iozzi %A Anne Parreau %A Maria Beatrice Pozzetti %T The real spectrum compactification of character varieties: characterizations and applications %J Comptes Rendus. Mathématique %D 2021 %P 439-463 %V 359 %N 4 %I Académie des sciences, Paris %R 10.5802/crmath.123 %G en %F CRMATH_2021__359_4_439_0
Marc Burger; Alessandra Iozzi; Anne Parreau; Maria Beatrice Pozzetti. The real spectrum compactification of character varieties: characterizations and applications. Comptes Rendus. Mathématique, Volume 359 (2021) no. 4, pp. 439-463. doi : 10.5802/crmath.123. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.123/
[1] The generalized buiildings for symmetric spaces of algebraic groups, 2021 (preprint)
[2] Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 36, Springer, 1998, x+430 pages (Translated from the 1987 French original, Revised by the authors) | DOI | MR | Zbl
[3] Real geometric invariant theory (2017) (https://arxiv.org/abs/1701.00643) | Zbl
[4] The geometry of Teichmüller space via geodesic currents, Invent. Math., Volume 92 (1988) no. 1, pp. 139-162 | DOI | MR | Zbl
[5] Parameterizing Hitchin components, Duke Math. J., Volume 163 (2014) no. 15, pp. 2935-2975 | DOI | MR | Zbl
[6] Commutative algebra. Chapters 1–7, Elements of Mathematics, Springer, 1998, xxiv+625 pages (Translated from the French, Reprint of the 1989 English translation) | MR | Zbl
[7] Compactification via le spectre réel d’espaces des classes de représentations dans , Ann. Inst. Fourier, Volume 44 (1994) no. 2, pp. 347-385 | DOI | MR | Zbl
[8] The real spectrum compactification of Teichmüller space, Geometry of group representations (Boulder, CO, 1987) (Contemporary Mathematics), Volume 74, American Mathematical Society, 1988, pp. 51-75 | DOI | MR | Zbl
[9] A semi-algebraic Brouwer fixed point theorem for real affine space, Geometry of group representations (Boulder, CO, 1987) (Contemporary Mathematics), Volume 74, American Mathematical Society, 1988, pp. 77-82 | DOI | MR | Zbl
[10] The ultrafilter theorem in real algebraic geometry, Rocky Mt. J. Math., Volume 19 (1989) no. 3, pp. 611-628 Quadratic forms and real algebraic geometry (Corvallis, OR, 1986) | DOI | MR | Zbl
[11] A Hopf fixed point theorem for semi-algebraic maps, Real algebraic geometry (Rennes, 1991) (Lecture Notes in Mathematics), Volume 1524, Springer, 1992, pp. 163-169 | DOI | MR | Zbl
[12] Currents, systoles and compactifications of character varieties (2019) (https://arxiv.org/abs/1902.07680, submitted) | Zbl
[13] Positive crossratios, barycenters, trees and applications to maximal representations, 2021 (https://arxiv.org/abs/2103.17161, preprint in preliminary version,) | Zbl
[14] The real spectrum compactification of character varieties, 2021 (preprint in preliminary version) | Zbl
[15] Real spectrum of maximal character varieties, 2021 (in preparation) | Zbl
[16] Surface group representations with maximal Toledo invariant, Ann. Math., Volume 172 (2010) no. 1, pp. 517-566 | DOI | MR | Zbl
[17] Maximal representations, non-Archimedean Siegel spaces, and buildings, Geom. Topol., Volume 21 (2017) no. 6, pp. 3539-3599 | DOI | MR | Zbl
[18] Displacing representations and orbit maps, Geometry, rigidity, and group actions (Chicago Lectures in Mathematics), University of Chicago Press, 2011, pp. 494-514 | MR | Zbl
[19] Cocycles, Hausdorff measures and cross ratios, Ergodic Theory Dyn. Syst., Volume 17 (1997) no. 5, pp. 1061-1081 | DOI | MR | Zbl
[20] Geometry of the mapping class groups. I. Boundary amenability, Invent. Math., Volume 175 (2009) no. 3, pp. 545-609 | DOI | MR | Zbl
[21] Global existence theorems for harmonic maps to non-locally compact spaces, Commun. Anal. Geom., Volume 5 (1997) no. 2, pp. 333-387 | DOI | MR | Zbl
[22] Ultrapowers of Lie groups, a question of Gromov, and the Margulis conjecture, Essays in geometric group theory (Ramanujan Mathematical Society Lecture Notes Series), Volume 9, Ramanujan Mathematical Society, 2009, pp. 61-77 | MR | Zbl
[23] Cross ratios, Anosov representations and the energy functional on Teichmüller space., Ann. Sci. Éc. Norm. Supér., Volume 41 (2008) no. 3, pp. 439-471 | DOI | Numdam | Zbl
[24]
(oral communication)[25] An introduction to geometric topology, CreateSpace Independent Publishing Platform, 2016, 488 pages
[26] Positively ratioed representations, Comment. Math. Helv., Volume 94 (2019) no. 2, pp. 273-345 | DOI | MR | Zbl
[27] -trees and their applications, Bull. Am. Math. Soc., Volume 26 (1992) no. 1, pp. 87-112 | DOI | MR
[28] Compactification d’espaces de représentations de groupes de type fini, Math. Z., Volume 272 (2012) no. 1-2, pp. 51-86 | DOI | MR | Zbl
[29] Structures de Finsler invariantes sur les espaces symétriques, C. R. Math. Acad. Sci. Paris, Volume 321 (1995) no. 11, pp. 1455-1458 | MR | Zbl
[30] Minimum vectors for real reductive algebraic groups, J. Lond. Math. Soc., Volume 42 (1990) no. 3, pp. 409-429 | DOI | MR | Zbl
[31] Fenchel–Nielsen coordinates for maximal representations, Geom. Dedicata, Volume 176 (2015), pp. 45-86 | DOI | MR | Zbl
[32] Energy of harmonic maps and Gardiner’s formula, In the tradition of Ahlfors–Bers. IV (Contemporary Mathematics), Volume 432, American Mathematical Society, 2007, pp. 221-229 | DOI | MR | Zbl
[33] Connected components of the compactification of representation spaces of surface groups, Geom. Topol., Volume 15 (2011) no. 3, pp. 1225-1295 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique