[Croissance forte des variétés à courbure négative]
On montre que toute variété fermée X de courbure négative est à croissance forte : cela signifie que le revêtement universel
We show that any closed negatively curved manifold X is growth tight: this means that its universal covering
Accepté le :
Publié le :
Andrea Sambusetti 1
@article{CRMATH_2003__336_6_487_0, author = {Andrea Sambusetti}, title = {Growth tightness of negatively curved manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {487--491}, publisher = {Elsevier}, volume = {336}, number = {6}, year = {2003}, doi = {10.1016/S1631-073X(03)00086-4}, language = {en}, }
Andrea Sambusetti. Growth tightness of negatively curved manifolds. Comptes Rendus. Mathématique, Volume 336 (2003) no. 6, pp. 487-491. doi : 10.1016/S1631-073X(03)00086-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00086-4/
[1] G.N. Arzhantseva, I.G. Lysenok, Growth tightness for word hyperbolic groups, Prépublication de l'Université de Genève, 2001
[2] On problems related to growth, entropy and spectrum in group theory, J. Dynam. Control Systems, Volume 3 (1997) no. 1, pp. 51-89
[3] A. Sambusetti, Growth tightness of free and amalgamated products, Ann. Sci. École Norm. Sup., to appear
[4] A. Sambusetti, Growth tightness of surface groups, Exposition. Math., to appear
Cité par Sources :
Commentaires - Politique