Comptes Rendus
Geometry
The conformal boundary of Margulis space–times
[Le bord conforme des espaces–temps de Margulis]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 9, pp. 751-756.

Dans cette Note, nous montrons comment construire le bord conforme des espaces–temps de Margulis R1,2/Γ lorsque Γ est un groupe de Schottky affine.

In this Note, we show how to construct the conformal boundary of Margulis space–times R1,2/Γ when Γ is an affine Schottky group.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00170-5

Charles Frances 1

1 U.M.P.A., E.N.S. Lyon, 46, allée d'Italie, 69364 Lyon cedex 07, France
@article{CRMATH_2003__336_9_751_0,
     author = {Charles Frances},
     title = {The conformal boundary of {Margulis} space{\textendash}times},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {751--756},
     publisher = {Elsevier},
     volume = {336},
     number = {9},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00170-5},
     language = {en},
}
TY  - JOUR
AU  - Charles Frances
TI  - The conformal boundary of Margulis space–times
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 751
EP  - 756
VL  - 336
IS  - 9
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00170-5
LA  - en
ID  - CRMATH_2003__336_9_751_0
ER  - 
%0 Journal Article
%A Charles Frances
%T The conformal boundary of Margulis space–times
%J Comptes Rendus. Mathématique
%D 2003
%P 751-756
%V 336
%N 9
%I Elsevier
%R 10.1016/S1631-073X(03)00170-5
%G en
%F CRMATH_2003__336_9_751_0
Charles Frances. The conformal boundary of Margulis space–times. Comptes Rendus. Mathématique, Volume 336 (2003) no. 9, pp. 751-756. doi : 10.1016/S1631-073X(03)00170-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00170-5/

[1] T.A. Drumm Fundamental polyhedra for Margulis space–times, Topology, Volume 31 (1992) no. 4, pp. 677-683

[2] T.A. Drumm Linear holonomy of Margulis space–times, J. Differential Geom., Volume 38 (1993) no. 3, pp. 679-690

[3] T.A. Drumm; W.M. Goldman Complete flat Lorentz 3-manifolds with free fundamental group, Internat. J. Math., Volume 1 (1990) no. 2, pp. 149-161

[4] T.A. Drumm; W.M. Goldman The geometry of crooked planes, Topology, Volume 38 (1999) no. 2, pp. 323-351

[5] C. Frances, Géométrie et dynamique lorentziennes conformes, Thèse, available at www.umpa.ens-lyon.fr/cfrances/

[6] G. Margulis Free properly discontinuous groups of affine transformations, Dokl. Akad. Nauk SSSR, Volume 272 (1983), pp. 937-940

[7] J. Milnor On fundamental group of complete affinely flat manifolds, Adv. Math., Volume 25 (1977), pp. 178-187

  • Fanny Kassel Discrete subgroups of semisimple Lie groups, beyond lattices, Groups St Andrews 2022 in Newcastle (2024), p. 118 | DOI:10.1017/9781009563208.005
  • Jean-Philippe Burelle; Nicolaus Treib Schottky presentations of positive representations, Mathematische Annalen, Volume 382 (2022) no. 3-4, p. 1705 | DOI:10.1007/s00208-021-02326-z
  • Jean-Philippe Burelle; Virginie Charette; Dominik Francoeur; William M. Goldman Einstein tori and crooked surfaces, Advances in Geometry, Volume 21 (2021) no. 2, p. 237 | DOI:10.1515/advgeom-2020-0023
  • Jean-Philippe Burelle; Nicolaus Treib Schottky groups and maximal representations, Geometriae Dedicata, Volume 195 (2018) no. 1, p. 215 | DOI:10.1007/s10711-017-0285-2
  • Jeffrey Danciger; François Guéritaud; Fanny Kassel Margulis spacetimes via the arc complex, Inventiones mathematicae, Volume 204 (2016) no. 1, p. 133 | DOI:10.1007/s00222-015-0610-z
  • William M. Goldman Crooked surfaces and anti-de Sitter geometry, Geometriae Dedicata, Volume 175 (2015) no. 1, p. 159 | DOI:10.1007/s10711-014-0034-8
  • Virginie Charette; Dominik Francoeur; Rosemonde Lareau-Dussault Fundamental domains in the Einstein Universe, Topology and its Applications, Volume 174 (2014), p. 62 | DOI:10.1016/j.topol.2014.06.011

Cité par 7 documents. Sources : Crossref

Commentaires - Politique