[Opérateurs de collisions quantiques conservant la masse, l'impulsion et l'énergie]
In this Note, we generalize the Boltzmann collision operator modeling binary particle–particle collisions to a quantum framework using nonlocal quantum entropy principles.
Dans cette Note, nous généralisons l'opérateur de collision de Boltzmann modélisant les collisions binaires particule–particule au cadre quantique, en utilisant un principe non-local de minimisation d'entropie quantique.
Accepté le :
Publié le :
Pierre Degond 1 ; Christian Ringhofer 2
@article{CRMATH_2003__336_9_785_0, author = {Pierre Degond and Christian Ringhofer}, title = {Binary quantum collision operators conserving mass momentum and energy}, journal = {Comptes Rendus. Math\'ematique}, pages = {785--790}, publisher = {Elsevier}, volume = {336}, number = {9}, year = {2003}, doi = {10.1016/S1631-073X(03)00185-7}, language = {en}, }
Pierre Degond; Christian Ringhofer. Binary quantum collision operators conserving mass momentum and energy. Comptes Rendus. Mathématique, Volume 336 (2003) no. 9, pp. 785-790. doi : 10.1016/S1631-073X(03)00185-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00185-7/
[1] Quantum kinetic equations for electrons in high electric and phonon fields, Phys. Lett. A, Volume 171 (1992)
[2] A. Arnold, J. Lopez, P. Markowich, J. Soler, An analysis of quantum Fokker–Planck models: A Wigner function approach, Preprint, 2002
[3] Self-scattering path-variable formulation of high-field, time-dependent, quantum kinetic equations for semiconductor transport in the finite collision–duration regime, Phys. Rev. Lett., Volume 42 (1997)
[4] The Boltzmann Equation and Its Applications, Appl. Math. Sci., 67, Springer-Verlag, 1988
[5] P. Degond, C. Ringhofer, Quantum moment hydrodynamics and the entropy principle, J. Stat. Phys. (2002), submitted. Preprint available at URL: http://math.la.asu.edu/.~chris
[6] A note on quantum moment hydrodynamics and the entropy principle, C. R. Acad. Sci. Paris, Ser. 1, Volume 335 (2002), pp. 967-972
[7] A Wignerfunction approach to phonon scattering, VLSI Design, Volume 9 (1999), pp. 339-350
[8] Pseudodifferential Operators and Spectral Theory, Springer, 1980
[9] Statistical Mechanics of Nonequilibrium Processes, Vol. 1, Basic Concepts, Kinetic Theory, Akademie-Verlag, Berlin, 1996
- Existence and uniqueness of time periodic solutions for quantum versions of three-dimensional Schrödinger equations, Analysis and Mathematical Physics, Volume 12 (2022) no. 4, p. 39 (Id/No 102) | DOI:10.1007/s13324-022-00710-9 | Zbl:1504.35480
- The Wigner Equation, Transport Equations for Semiconductors, Volume 773 (2009), p. 1 | DOI:10.1007/978-3-540-89526-8_11
- An entropic quantum drift-diffusion model for electron transport in resonant tunneling diodes, Journal of Computational Physics, Volume 221 (2007) no. 1, pp. 226-249 | DOI:10.1016/j.jcp.2006.06.027 | Zbl:1107.82401
- On quantum extensions to classical spherical harmonics expansion/Fokker-Planck models, Journal of Mathematical Physics, Volume 47 (2006) no. 4, p. 043302 | DOI:10.1063/1.2192968 | Zbl:1111.82028
- Quantum transport and Boltzmann operators, Journal of Statistical Physics, Volume 122 (2006) no. 3, pp. 417-436 | DOI:10.1007/s10955-005-8082-y | Zbl:1149.82338
- Quantum Energy-Transport and Drift-Diffusion Models, Journal of Statistical Physics, Volume 118 (2005) no. 3-4, p. 625 | DOI:10.1007/s10955-004-8823-3
- Entropic Discretization of a Quantum Drift-Diffusion Model, SIAM Journal on Numerical Analysis, Volume 43 (2005) no. 5, p. 1828 | DOI:10.1137/040610556
- Numerical approximation of a quantum drift-diffusion model, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 339 (2004) no. 7, pp. 519-524 | DOI:10.1016/j.crma.2004.07.022 | Zbl:1058.65089
Cité par 8 documents. Sources : Crossref, zbMATH
Commentaires - Politique