[Opérateurs de collisions quantiques conservant la masse, l'impulsion et l'énergie]
Dans cette Note, nous généralisons l'opérateur de collision de Boltzmann modélisant les collisions binaires particule–particule au cadre quantique, en utilisant un principe non-local de minimisation d'entropie quantique.
In this Note, we generalize the Boltzmann collision operator modeling binary particle–particle collisions to a quantum framework using nonlocal quantum entropy principles.
Accepté le :
Publié le :
Pierre Degond 1 ; Christian Ringhofer 2
@article{CRMATH_2003__336_9_785_0, author = {Pierre Degond and Christian Ringhofer}, title = {Binary quantum collision operators conserving mass momentum and energy}, journal = {Comptes Rendus. Math\'ematique}, pages = {785--790}, publisher = {Elsevier}, volume = {336}, number = {9}, year = {2003}, doi = {10.1016/S1631-073X(03)00185-7}, language = {en}, }
Pierre Degond; Christian Ringhofer. Binary quantum collision operators conserving mass momentum and energy. Comptes Rendus. Mathématique, Volume 336 (2003) no. 9, pp. 785-790. doi : 10.1016/S1631-073X(03)00185-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00185-7/
[1] Quantum kinetic equations for electrons in high electric and phonon fields, Phys. Lett. A, Volume 171 (1992)
[2] A. Arnold, J. Lopez, P. Markowich, J. Soler, An analysis of quantum Fokker–Planck models: A Wigner function approach, Preprint, 2002
[3] Self-scattering path-variable formulation of high-field, time-dependent, quantum kinetic equations for semiconductor transport in the finite collision–duration regime, Phys. Rev. Lett., Volume 42 (1997)
[4] The Boltzmann Equation and Its Applications, Appl. Math. Sci., 67, Springer-Verlag, 1988
[5] P. Degond, C. Ringhofer, Quantum moment hydrodynamics and the entropy principle, J. Stat. Phys. (2002), submitted. Preprint available at URL: http://math.la.asu.edu/.~chris
[6] A note on quantum moment hydrodynamics and the entropy principle, C. R. Acad. Sci. Paris, Ser. 1, Volume 335 (2002), pp. 967-972
[7] A Wignerfunction approach to phonon scattering, VLSI Design, Volume 9 (1999), pp. 339-350
[8] Pseudodifferential Operators and Spectral Theory, Springer, 1980
[9] Statistical Mechanics of Nonequilibrium Processes, Vol. 1, Basic Concepts, Kinetic Theory, Akademie-Verlag, Berlin, 1996
Cité par Sources :
Commentaires - Politique