[Une Note sur l'hydrodynamique des moments quantiques et le principe d'entropie]
Dans cette Note, nous montrons comment une version non-commutative du principe d'extremalisation de l'entropie permet de construire de nouveaux modèles hydrodynamiques quantiques.
In this Note, we show how a non-commutative version of the entropy extremalization principle allows one to construct new quantum hydrodynamic models.
Accepté le :
Publié le :
Pierre Degond 1 ; Christian Ringhofer 2
@article{CRMATH_2002__335_11_967_0, author = {Pierre Degond and Christian Ringhofer}, title = {A {Note} on quantum moment hydrodynamics and the entropy principle}, journal = {Comptes Rendus. Math\'ematique}, pages = {967--972}, publisher = {Elsevier}, volume = {335}, number = {11}, year = {2002}, doi = {10.1016/S1631-073X(02)02595-5}, language = {en}, }
Pierre Degond; Christian Ringhofer. A Note on quantum moment hydrodynamics and the entropy principle. Comptes Rendus. Mathématique, Volume 335 (2002) no. 11, pp. 967-972. doi : 10.1016/S1631-073X(02)02595-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02595-5/
[1] P. Degond, C. Ringhofer, Quantum moment hydrodynamics and the entropy principle, Manuscript
[2] Modelling of quantum transport in semiconductor devices, Solid State Phys, Volume 49 (1995), pp. 283-448
[3] The quantum hydrodynamic model for semiconductor devices, SIAM J. Appl. Math, Volume 54 (1994), pp. 409-427
[4] The smooth quantum potential for the hydrodynamic model, Phys. Rev. E, Volume 53 (1996), pp. 157-167
[5] The Chapman–Enskog expansion and the quantum hydrodynamic model for semiconductor devices, VLSI Design, Volume 10 (2000), pp. 415-435
[6] Closure conditions for classical and quantum moment hierarchies in the small temperature limit, Transport Theory Statist. Phys, Volume 25 (1996), pp. 409-423
[7] Quantum moment balance equations and resonant tunneling structures, Solid State Electron, Volume 32 (1989), pp. 1071-1075
[8] Moment closure hierarchies for kinetic theories, J. Statist. Phys, Volume 83 (1996), pp. 1021-1065
[9] arXiv
(arXiv: v2 11 Sep 1999) |[10] Zubarev's method of a nonequilibrium statistical operator and some challenges in the theory of irreversible processes, Condensed Matter Phys, Volume 1 (1998), pp. 673-686
[11] Rational Extended Thermodynamics, Springer Tracts Nat. Philos, 37, Springer, 1998
[12] Pseudodifferential Operators and Spectral Theory, Springer, 1980
[13] Statistical Mechanics of Nonequilibrium Processes, Vol. 1, Basic Concepts, Kinetic Theory, Akademie-Verlag, Berlin, 1996
- Some fluid-dynamic models for quantum electron transport in graphene via entropy minimization, Kinetic Related Models, Volume 5 (2012) no. 1, p. 203 | DOI:10.3934/krm.2012.5.203
- Quantum Drift-Diffusion Equations, Transport Equations for Semiconductors, Volume 773 (2009), p. 1 | DOI:10.1007/978-3-540-89526-8_12
- , 2008 47th IEEE Conference on Decision and Control (2008), p. 5092 | DOI:10.1109/cdc.2008.4739510
- Quantum Hydrodynamic and Diffusion Models Derived from the Entropy Principle, Quantum Transport, Volume 1946 (2008), p. 111 | DOI:10.1007/978-3-540-79574-2_3
- Quantum transport and Boltzmann operators, Journal of Statistical Physics, Volume 122 (2006) no. 3, pp. 417-436 | DOI:10.1007/s10955-005-8082-y | Zbl:1149.82338
- Quantum Energy-Transport and Drift-Diffusion Models, Journal of Statistical Physics, Volume 118 (2005) no. 3-4, p. 625 | DOI:10.1007/s10955-004-8823-3
- Binary quantum collision operators conserving mass momentum and energy., Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 336 (2003) no. 9, pp. 785-790 | DOI:10.1016/s1631-073x(03)00185-7 | Zbl:1037.82030
Cité par 7 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier