[Invariants et espaces propres des groupes de réflexion complexes]
We prove some variations of formulas of Orlik and Solomon in the invariant theory of finite unitary reflection groups, and use them to give elementary and case-free proofs of some results of Lehrer and Springer, in particular that an integer is regular for a reflection group G if and only if it divides the same number of degrees and codegrees.
En utilisant des variantes d'une formule de Orlik et Solomon relative aux invariants d'un groupe de réflexions complexes G, nous redémontrons de façon élémentaire deux résultats de Lehrer and Springer, en particulier le fait qu'un entier est régulier pour G si et seulement si il divise le même nombre de degrés et de codegrés. Notre preuve évite l'analyse cas par cas.
Accepté le :
Publié le :
Gustav I. Lehrer 1 ; Jean Michel 2, 3
@article{CRMATH_2003__336_10_795_0, author = {Gustav I. Lehrer and Jean Michel}, title = {Invariant theory and eigenspaces for unitary reflection groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {795--800}, publisher = {Elsevier}, volume = {336}, number = {10}, year = {2003}, doi = {10.1016/S1631-073X(03)00192-4}, language = {en}, }
Gustav I. Lehrer; Jean Michel. Invariant theory and eigenspaces for unitary reflection groups. Comptes Rendus. Mathématique, Volume 336 (2003) no. 10, pp. 795-800. doi : 10.1016/S1631-073X(03)00192-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00192-4/
[1] Intersection multiplicities and reflection subquotients of unitary reflection groups I, Geometric Group Theory down Under, Canberra, 1996, de Gruyter, Berlin, 1999, pp. 181-193
[2] Reflection subquotients of unitary reflection groups, Canadian J. Math., Volume 51 (1999), pp. 1175-1193
[3] Unitary reflection groups and cohomology, Invent. Math., Volume 59 (1980), pp. 77-94
[4] Monstrous E10's and a generalization of a theorem of L. Solomon, C. R. Math. Rep. Acad. Sci. Canada, Volume 11 (1989), pp. 189-194
[5] Regular elements of finite reflection groups, Invent. Math., Volume 25 (1974), pp. 159-198
[6] Differential equations invariant under finite reflection groups, Trans. Amer. Math. Soc., Volume 112 (1964), pp. 392-400
- Rational Catalan numbers for complex reflection groups, Journal of Algebra, Volume 672 (2025), pp. 10-30 | DOI:10.1016/j.jalgebra.2025.01.027 | Zbl:8030595
- A construction of the Shephard-Todd group
through the Weyl group of type , Portugaliae Mathematica, Volume 82 (2025) no. 1-2, pp. 63-70 | DOI:10.4171/pm/2119 | Zbl:8018123 - Matrix factorisations arising from well-generated complex reflection groups, Journal of Algebra, Volume 556 (2020), pp. 1018-1035 | DOI:10.1016/j.jalgebra.2020.03.015 | Zbl:1481.20138
- Invariant derivations and differential forms for reflection groups, Proceedings of the London Mathematical Society. Third Series, Volume 119 (2019) no. 2, pp. 329-357 | DOI:10.1112/plms.12233 | Zbl:1468.20076
- A refined count of Coxeter element reflection factorizations, The Electronic Journal of Combinatorics, Volume 25 (2018) no. 1, p. research | Zbl:1486.20048
- On non-conjugate Coxeter elements in well-generated reflection groups, Mathematische Zeitschrift, Volume 285 (2017) no. 3-4, pp. 1041-1062 | DOI:10.1007/s00209-016-1736-4 | Zbl:1377.20027
- Finite complex reflection arrangements are
, Annals of Mathematics. Second Series, Volume 181 (2015) no. 3, pp. 809-904 | DOI:10.4007/annals.2015.181.3.1 | Zbl:1372.20036 - Braid groups of imprimitive complex reflection groups., Journal of Algebra, Volume 427 (2015), pp. 387-425 | DOI:10.1016/j.jalgebra.2015.01.004 | Zbl:1320.20037
- Power sum decompositions of defining equations of reflection arrangements, Journal of Algebraic Combinatorics, Volume 41 (2015) no. 2, pp. 365-383 | DOI:10.1007/s10801-014-0539-0 | Zbl:1326.15017
- Pseudo-reflection groups and essential dimension., Journal of the London Mathematical Society. Second Series, Volume 90 (2014) no. 3, pp. 879-902 | DOI:10.1112/jlms/jdu056 | Zbl:1317.20039
- Cyclic Sieving for Generalised Non-crossing Partitions Associated with Complex Reflection Groups of Exceptional Type, Advances in Combinatorics (2013), p. 209 | DOI:10.1007/978-3-642-30979-3_12
- Supports of irreducible spherical representations of rational Cherednik algebras of finite Coxeter groups. (With an appendix by Stephen Griffeth)., Advances in Mathematics, Volume 229 (2012) no. 3, pp. 2042-2054 | DOI:10.1016/j.aim.2011.09.006 | Zbl:1238.20008
- Cyclic sieving of noncrossing partitions for complex reflection groups., Annals of Combinatorics, Volume 15 (2011) no. 2, pp. 197-222 | DOI:10.1007/s00026-011-0090-9 | Zbl:1268.20041
- Exterior algebra structure on relative invariants of reflection groups, Mathematische Zeitschrift, Volume 267 (2011) no. 1-2, pp. 261-289 | DOI:10.1007/s00209-009-0619-3 | Zbl:1215.13004
- Reflection groups., Handbook of algebra. Volume 4, Amsterdam: Elsevier/North-Holland, 2006, pp. 337-383 | DOI:10.1016/s1570-7954(06)80009-4 | Zbl:1210.20038
- Relative invariants: an exterior algebra., Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 342 (2006) no. 10, pp. 727-732 | DOI:10.1016/j.crma.2006.03.014 | Zbl:1173.13301
- Generalized exponents and forms., Journal of Algebraic Combinatorics, Volume 21 (2005) no. 2, pp. 185-202 | DOI:10.1007/s10801-005-6908-y | Zbl:1086.20021
- Remarks concerning linear characters of reflection groups, Proceedings of the American Mathematical Society, Volume 133 (2005) no. 11, p. 3163 | DOI:10.1090/s0002-9939-05-07869-x
Cité par 18 documents. Sources : Crossref, zbMATH
Commentaires - Politique