Comptes Rendus
Group Theory
Invariant theory and eigenspaces for unitary reflection groups
[Invariants et espaces propres des groupes de réflexion complexes]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 10, pp. 795-800.

We prove some variations of formulas of Orlik and Solomon in the invariant theory of finite unitary reflection groups, and use them to give elementary and case-free proofs of some results of Lehrer and Springer, in particular that an integer is regular for a reflection group G if and only if it divides the same number of degrees and codegrees.

En utilisant des variantes d'une formule de Orlik et Solomon relative aux invariants d'un groupe de réflexions complexes G, nous redémontrons de façon élémentaire deux résultats de Lehrer and Springer, en particulier le fait qu'un entier est régulier pour G si et seulement si il divise le même nombre de degrés et de codegrés. Notre preuve évite l'analyse cas par cas.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00192-4

Gustav I. Lehrer 1 ; Jean Michel 2, 3

1 School of Mathematics and Statistics, University of Sydney, N.S.W. 2006, Australia
2 LAMFA, Université de Picardie-Jules Verne, 33, rue Saint-Leu, 80039 Amiens cedex, France
3 Institut de mathématiques, Université Paris VII, 175, rue du Chevaleret, 75013 Paris, France
@article{CRMATH_2003__336_10_795_0,
     author = {Gustav I. Lehrer and Jean Michel},
     title = {Invariant theory and eigenspaces for unitary reflection groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {795--800},
     publisher = {Elsevier},
     volume = {336},
     number = {10},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00192-4},
     language = {en},
}
TY  - JOUR
AU  - Gustav I. Lehrer
AU  - Jean Michel
TI  - Invariant theory and eigenspaces for unitary reflection groups
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 795
EP  - 800
VL  - 336
IS  - 10
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00192-4
LA  - en
ID  - CRMATH_2003__336_10_795_0
ER  - 
%0 Journal Article
%A Gustav I. Lehrer
%A Jean Michel
%T Invariant theory and eigenspaces for unitary reflection groups
%J Comptes Rendus. Mathématique
%D 2003
%P 795-800
%V 336
%N 10
%I Elsevier
%R 10.1016/S1631-073X(03)00192-4
%G en
%F CRMATH_2003__336_10_795_0
Gustav I. Lehrer; Jean Michel. Invariant theory and eigenspaces for unitary reflection groups. Comptes Rendus. Mathématique, Volume 336 (2003) no. 10, pp. 795-800. doi : 10.1016/S1631-073X(03)00192-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00192-4/

[1] G.I. Lehrer; T.A. Springer Intersection multiplicities and reflection subquotients of unitary reflection groups I, Geometric Group Theory down Under, Canberra, 1996, de Gruyter, Berlin, 1999, pp. 181-193

[2] G.I. Lehrer; T.A. Springer Reflection subquotients of unitary reflection groups, Canadian J. Math., Volume 51 (1999), pp. 1175-1193

[3] P. Orlik; L. Solomon Unitary reflection groups and cohomology, Invent. Math., Volume 59 (1980), pp. 77-94

[4] A. Pianzola; A. Weiss Monstrous E10's and a generalization of a theorem of L. Solomon, C. R. Math. Rep. Acad. Sci. Canada, Volume 11 (1989), pp. 189-194

[5] T. Springer Regular elements of finite reflection groups, Invent. Math., Volume 25 (1974), pp. 159-198

[6] R. Steinberg Differential equations invariant under finite reflection groups, Trans. Amer. Math. Soc., Volume 112 (1964), pp. 392-400

  • Weston Miller Rational Catalan numbers for complex reflection groups, Journal of Algebra, Volume 672 (2025), pp. 10-30 | DOI:10.1016/j.jalgebra.2025.01.027 | Zbl:8030595
  • Cédric Bonnafé A construction of the Shephard-Todd group G32 through the Weyl group of type E6, Portugaliae Mathematica, Volume 82 (2025) no. 1-2, pp. 63-70 | DOI:10.4171/pm/2119 | Zbl:8018123
  • Benjamin Briggs Matrix factorisations arising from well-generated complex reflection groups, Journal of Algebra, Volume 556 (2020), pp. 1018-1035 | DOI:10.1016/j.jalgebra.2020.03.015 | Zbl:1481.20138
  • Victor Reiner; Anne V. Shepler Invariant derivations and differential forms for reflection groups, Proceedings of the London Mathematical Society. Third Series, Volume 119 (2019) no. 2, pp. 329-357 | DOI:10.1112/plms.12233 | Zbl:1468.20076
  • Elise Delmas; Thomas Hameister; Victor Reiner A refined count of Coxeter element reflection factorizations, The Electronic Journal of Combinatorics, Volume 25 (2018) no. 1, p. research | Zbl:1486.20048
  • Victor Reiner; Vivien Ripoll; Christian Stump On non-conjugate Coxeter elements in well-generated reflection groups, Mathematische Zeitschrift, Volume 285 (2017) no. 3-4, pp. 1041-1062 | DOI:10.1007/s00209-016-1736-4 | Zbl:1377.20027
  • David Bessis Finite complex reflection arrangements are K(π,1), Annals of Mathematics. Second Series, Volume 181 (2015) no. 3, pp. 809-904 | DOI:10.4007/annals.2015.181.3.1 | Zbl:1372.20036
  • Ruth Corran; Eon-Kyung Lee; Sang-Jin Lee Braid groups of imprimitive complex reflection groups., Journal of Algebra, Volume 427 (2015), pp. 387-425 | DOI:10.1016/j.jalgebra.2015.01.004 | Zbl:1320.20037
  • Zach Teitler; Alexander Woo Power sum decompositions of defining equations of reflection arrangements, Journal of Algebraic Combinatorics, Volume 41 (2015) no. 2, pp. 365-383 | DOI:10.1007/s10801-014-0539-0 | Zbl:1326.15017
  • Alexander Duncan; Zinovy Reichstein Pseudo-reflection groups and essential dimension., Journal of the London Mathematical Society. Second Series, Volume 90 (2014) no. 3, pp. 879-902 | DOI:10.1112/jlms/jdu056 | Zbl:1317.20039
  • Christian Krattenthaler; Thomas W. Müller Cyclic Sieving for Generalised Non-crossing Partitions Associated with Complex Reflection Groups of Exceptional Type, Advances in Combinatorics (2013), p. 209 | DOI:10.1007/978-3-642-30979-3_12
  • Pavel Etingof Supports of irreducible spherical representations of rational Cherednik algebras of finite Coxeter groups. (With an appendix by Stephen Griffeth)., Advances in Mathematics, Volume 229 (2012) no. 3, pp. 2042-2054 | DOI:10.1016/j.aim.2011.09.006 | Zbl:1238.20008
  • David Bessis; Victor Reiner Cyclic sieving of noncrossing partitions for complex reflection groups., Annals of Combinatorics, Volume 15 (2011) no. 2, pp. 197-222 | DOI:10.1007/s00026-011-0090-9 | Zbl:1268.20041
  • Vincent Beck Exterior algebra structure on relative invariants of reflection groups, Mathematische Zeitschrift, Volume 267 (2011) no. 1-2, pp. 261-289 | DOI:10.1007/s00209-009-0619-3 | Zbl:1215.13004
  • Meinolf Geck; Gunter Malle Reflection groups., Handbook of algebra. Volume 4, Amsterdam: Elsevier/North-Holland, 2006, pp. 337-383 | DOI:10.1016/s1570-7954(06)80009-4 | Zbl:1210.20038
  • Vincent Beck Relative invariants: an exterior algebra., Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 342 (2006) no. 10, pp. 727-732 | DOI:10.1016/j.crma.2006.03.014 | Zbl:1173.13301
  • Anne V. Shepler Generalized exponents and forms., Journal of Algebraic Combinatorics, Volume 21 (2005) no. 2, pp. 185-202 | DOI:10.1007/s10801-005-6908-y | Zbl:1086.20021
  • G. Lehrer Remarks concerning linear characters of reflection groups, Proceedings of the American Mathematical Society, Volume 133 (2005) no. 11, p. 3163 | DOI:10.1090/s0002-9939-05-07869-x

Cité par 18 documents. Sources : Crossref, zbMATH

Commentaires - Politique