[Sur un principe de comparaison de type Liouville pour des solutions d'inégalités elliptiques quasi-linéaires]
On caractérise en terme de monotonie, des propriétés fondamentales d'opérateurs aux dérivées partielles, elliptiques, quasi-linéaires permettant d'établir un principe de comparaison de type Liouville, des solutions faibles d'inégalités aux dérivée partielles, elliptiques, quasi-linéaires de la forme A(u)+|u|q−1u⩽A(v)+|v|q−1v. Ces solutions appartiennent seulement localement aux espaces de Sobolev correspondant dans
We characterize in terms of monotonicity basic properties of quasilinear elliptic partial differential operators which make it possible to obtain a Liouville-type comparison principle for entire solutions of quasilinear elliptic partial differential inequalities of the form A(u)+|u|q−1u⩽A(v)+|v|q−1v, which belong only locally to the corresponding Sobolev spaces on
Accepté le :
Publié le :
Vasilii V. Kurta 1
@article{CRMATH_2003__336_11_897_0, author = {Vasilii V. Kurta}, title = {On a {Liouville-type} comparison principle for solutions of~quasilinear elliptic inequalities}, journal = {Comptes Rendus. Math\'ematique}, pages = {897--900}, publisher = {Elsevier}, volume = {336}, number = {11}, year = {2003}, doi = {10.1016/S1631-073X(03)00225-5}, language = {en}, }
TY - JOUR AU - Vasilii V. Kurta TI - On a Liouville-type comparison principle for solutions of quasilinear elliptic inequalities JO - Comptes Rendus. Mathématique PY - 2003 SP - 897 EP - 900 VL - 336 IS - 11 PB - Elsevier DO - 10.1016/S1631-073X(03)00225-5 LA - en ID - CRMATH_2003__336_11_897_0 ER -
Vasilii V. Kurta. On a Liouville-type comparison principle for solutions of quasilinear elliptic inequalities. Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 897-900. doi : 10.1016/S1631-073X(03)00225-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00225-5/
[1] Nonlinear Potential Theory of Degenerate Elliptic Equations, The Clarendon Press, Oxford University Press, New York, 1993
[2] V.V. Kurta, Some problems of qualitative theory for nonlinear second-order equations, Ph.D. thesis, Steklov Math. Inst., Moscow, 1994
[3] Comparison principle for solutions of parabolic inequalities, C. R. Acad. Sci. Paris, Sér. I, Volume 322 (1996), pp. 1175-1180
[4] Comparison principle and analogues of the Phragmén–Lindelöf theorem for solutions of parabolic inequalities, Appl. Anal., Volume 71 (1999), pp. 301-324
[5] Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969
[6] Capacity and a generalized maximum principle for quasilinear equations of elliptic type, Dokl. Akad. Nauk SSSR, Volume 250 (1980), pp. 1318-1320
Cité par Sources :
☆ This work was reported by the author at the 981st AMS Meeting in October, 2002.
Commentaires - Politique