[Sur un principe de comparaison de type Liouville pour des solutions d'inégalités elliptiques quasi-linéaires]
On caractérise en terme de monotonie, des propriétés fondamentales d'opérateurs aux dérivées partielles, elliptiques, quasi-linéaires permettant d'établir un principe de comparaison de type Liouville, des solutions faibles d'inégalités aux dérivée partielles, elliptiques, quasi-linéaires de la forme A(u)+|u|q−1u⩽A(v)+|v|q−1v. Ces solutions appartiennent seulement localement aux espaces de Sobolev correspondant dans . On montre que ces propriétés sont valables pour une large classe d'opérateurs aux dérivées partielles elliptiques, quasi-linéaires. Des exemples typiques de tels opérateurs sont le p-laplacien et ses modifications bien connues pour 1<p⩽2.
We characterize in terms of monotonicity basic properties of quasilinear elliptic partial differential operators which make it possible to obtain a Liouville-type comparison principle for entire solutions of quasilinear elliptic partial differential inequalities of the form A(u)+|u|q−1u⩽A(v)+|v|q−1v, which belong only locally to the corresponding Sobolev spaces on . We establish that such properties are inherent for a wide class of quasilinear elliptic partial differential operators. Typical examples of such operators are the p-Laplacian and its well-known modifications for 1<p⩽2.
Accepté le :
Publié le :
Vasilii V. Kurta 1
@article{CRMATH_2003__336_11_897_0, author = {Vasilii V. Kurta}, title = {On a {Liouville-type} comparison principle for solutions of~quasilinear elliptic inequalities}, journal = {Comptes Rendus. Math\'ematique}, pages = {897--900}, publisher = {Elsevier}, volume = {336}, number = {11}, year = {2003}, doi = {10.1016/S1631-073X(03)00225-5}, language = {en}, }
TY - JOUR AU - Vasilii V. Kurta TI - On a Liouville-type comparison principle for solutions of quasilinear elliptic inequalities JO - Comptes Rendus. Mathématique PY - 2003 SP - 897 EP - 900 VL - 336 IS - 11 PB - Elsevier DO - 10.1016/S1631-073X(03)00225-5 LA - en ID - CRMATH_2003__336_11_897_0 ER -
Vasilii V. Kurta. On a Liouville-type comparison principle for solutions of quasilinear elliptic inequalities. Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 897-900. doi : 10.1016/S1631-073X(03)00225-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00225-5/
[1] Nonlinear Potential Theory of Degenerate Elliptic Equations, The Clarendon Press, Oxford University Press, New York, 1993
[2] V.V. Kurta, Some problems of qualitative theory for nonlinear second-order equations, Ph.D. thesis, Steklov Math. Inst., Moscow, 1994
[3] Comparison principle for solutions of parabolic inequalities, C. R. Acad. Sci. Paris, Sér. I, Volume 322 (1996), pp. 1175-1180
[4] Comparison principle and analogues of the Phragmén–Lindelöf theorem for solutions of parabolic inequalities, Appl. Anal., Volume 71 (1999), pp. 301-324
[5] Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969
[6] Capacity and a generalized maximum principle for quasilinear equations of elliptic type, Dokl. Akad. Nauk SSSR, Volume 250 (1980), pp. 1318-1320
Cité par Sources :
☆ This work was reported by the author at the 981st AMS Meeting in October, 2002.
Commentaires - Politique