Comptes Rendus
Analyse mathématique
Fonctions rationnelles et théorie de la réalisation: le cas hyper-analytique
[Rational functions and realization theory: the hyperholomorphic case]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 12, pp. 975-980.

We define and study the ring of rational functions in the hyperholomorphic setting. We give a number of equivalent characterizations of rationality. The Cauchy–Kovalevskaya product plays an important role in the arguments.

Nous définissons et étudions l'anneau des fonctions rationnelles dans le cadre hyper-analytique. Nous donnons un nombre de définitions équivalentes de la rationalité. La multiplication de Cauchy–Kovalevskaya joue un rôle important dans la théorie.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-073X(03)00233-4

Daniel Alpay 1; Baruch Schneider 1; Michael Shapiro 2; Dan Volok 1

1 Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israël
2 Departamento de Matemáticas, Escuela Superior de Fı́sica y Matemáticas, Instituto Politécnico Nacional, 07300 México, D.F., Mexique
@article{CRMATH_2003__336_12_975_0,
     author = {Daniel Alpay and Baruch Schneider and Michael Shapiro and Dan Volok},
     title = {Fonctions rationnelles et th\'eorie de la r\'ealisation: le cas hyper-analytique},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {975--980},
     publisher = {Elsevier},
     volume = {336},
     number = {12},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00233-4},
     language = {fr},
}
TY  - JOUR
AU  - Daniel Alpay
AU  - Baruch Schneider
AU  - Michael Shapiro
AU  - Dan Volok
TI  - Fonctions rationnelles et théorie de la réalisation: le cas hyper-analytique
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 975
EP  - 980
VL  - 336
IS  - 12
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00233-4
LA  - fr
ID  - CRMATH_2003__336_12_975_0
ER  - 
%0 Journal Article
%A Daniel Alpay
%A Baruch Schneider
%A Michael Shapiro
%A Dan Volok
%T Fonctions rationnelles et théorie de la réalisation: le cas hyper-analytique
%J Comptes Rendus. Mathématique
%D 2003
%P 975-980
%V 336
%N 12
%I Elsevier
%R 10.1016/S1631-073X(03)00233-4
%G fr
%F CRMATH_2003__336_12_975_0
Daniel Alpay; Baruch Schneider; Michael Shapiro; Dan Volok. Fonctions rationnelles et théorie de la réalisation: le cas hyper-analytique. Comptes Rendus. Mathématique, Volume 336 (2003) no. 12, pp. 975-980. doi : 10.1016/S1631-073X(03)00233-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00233-4/

[1] D. Alpay Algorithme de Schur, Panoramas et Synthèses, 6, Société Mathématique de France, Paris, 1998

[2] D. Alpay; C. Dubi A realization theorem for rational functions of several complex variables, System Control Lett., Volume 49 (2003) no. 3, pp. 225-229

[3] D. Alpay; H.T. Kaptanoğlu Some finite-dimensional backward shift-invariant subspaces in the ball and a related interpolation problem, Integral Equation Operator Theory, Volume 42 (2002), pp. 1-21

[4] D. Alpay; M. Shapiro Problème de Gleason et interpolation pour les fonctions hyper-analytiques, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2003)

[5] W. Arveson Subalgebras of C * -algebras. III. Multivariable operator theory, Acta Math., Volume 181 (1998), pp. 159-228

[6] J. Ball; T. Trent; V. Vinnikov Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces, Proceedings of Conference in Honor of the 60-th Birthday of M.A. Kaashoek, Oper. Theory Adv. Appl., 122, Birkhäuser, 2001, pp. 89-138

[7] H. Bart; I. Gohberg; M. Kaashoek Minimal Factorization of Matrix and Operator Functions, Oper. Theory Adv. Appl., 1, Birkhäuser, Basel, 1979

[8] F. Brackx; R. Delanghe; F. Sommen Clifford Analysis, Pitman Res. Notes, 76, 1982

[9] H. Dym, J-contractive matrix functions, reproducing kernel Hilbert spaces and interpolation. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1989

[10] K. Gürlebeck; W. Sprössig Quaternionic and Clifford Calculus for Physicists and Engineers, Mathematical Methods in Practice, 1, Wiley, 1997

[11] R.E. Kalman; P.L. Falb; M.A.K. Arbib Topics in Mathematical System Theory, McGraw-Hill, New York, 1969

[12] H. Malonek Hypercomplex differentiability its applications, Clifford Algebras and their Applications in Mathematical Physics, Deinze, 1993, Fund. Theories Phys., 55, Kluwer Academic, Dordrecht, 1993, pp. 141-150

Cited by Sources:

Comments - Policy