[Rational functions and realization theory: the hyperholomorphic case]
We define and study the ring of rational functions in the hyperholomorphic setting. We give a number of equivalent characterizations of rationality. The Cauchy–Kovalevskaya product plays an important role in the arguments.
Nous définissons et étudions l'anneau des fonctions rationnelles dans le cadre hyper-analytique. Nous donnons un nombre de définitions équivalentes de la rationalité. La multiplication de Cauchy–Kovalevskaya joue un rôle important dans la théorie.
Accepted:
Published online:
Daniel Alpay 1; Baruch Schneider 1; Michael Shapiro 2; Dan Volok 1
@article{CRMATH_2003__336_12_975_0, author = {Daniel Alpay and Baruch Schneider and Michael Shapiro and Dan Volok}, title = {Fonctions rationnelles et th\'eorie de la r\'ealisation: le cas hyper-analytique}, journal = {Comptes Rendus. Math\'ematique}, pages = {975--980}, publisher = {Elsevier}, volume = {336}, number = {12}, year = {2003}, doi = {10.1016/S1631-073X(03)00233-4}, language = {fr}, }
TY - JOUR AU - Daniel Alpay AU - Baruch Schneider AU - Michael Shapiro AU - Dan Volok TI - Fonctions rationnelles et théorie de la réalisation: le cas hyper-analytique JO - Comptes Rendus. Mathématique PY - 2003 SP - 975 EP - 980 VL - 336 IS - 12 PB - Elsevier DO - 10.1016/S1631-073X(03)00233-4 LA - fr ID - CRMATH_2003__336_12_975_0 ER -
%0 Journal Article %A Daniel Alpay %A Baruch Schneider %A Michael Shapiro %A Dan Volok %T Fonctions rationnelles et théorie de la réalisation: le cas hyper-analytique %J Comptes Rendus. Mathématique %D 2003 %P 975-980 %V 336 %N 12 %I Elsevier %R 10.1016/S1631-073X(03)00233-4 %G fr %F CRMATH_2003__336_12_975_0
Daniel Alpay; Baruch Schneider; Michael Shapiro; Dan Volok. Fonctions rationnelles et théorie de la réalisation: le cas hyper-analytique. Comptes Rendus. Mathématique, Volume 336 (2003) no. 12, pp. 975-980. doi : 10.1016/S1631-073X(03)00233-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00233-4/
[1] Algorithme de Schur, Panoramas et Synthèses, 6, Société Mathématique de France, Paris, 1998
[2] A realization theorem for rational functions of several complex variables, System Control Lett., Volume 49 (2003) no. 3, pp. 225-229
[3] Some finite-dimensional backward shift-invariant subspaces in the ball and a related interpolation problem, Integral Equation Operator Theory, Volume 42 (2002), pp. 1-21
[4] Problème de Gleason et interpolation pour les fonctions hyper-analytiques, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2003)
[5] Subalgebras of -algebras. III. Multivariable operator theory, Acta Math., Volume 181 (1998), pp. 159-228
[6] Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces, Proceedings of Conference in Honor of the 60-th Birthday of M.A. Kaashoek, Oper. Theory Adv. Appl., 122, Birkhäuser, 2001, pp. 89-138
[7] Minimal Factorization of Matrix and Operator Functions, Oper. Theory Adv. Appl., 1, Birkhäuser, Basel, 1979
[8] Clifford Analysis, Pitman Res. Notes, 76, 1982
[9] H. Dym, J-contractive matrix functions, reproducing kernel Hilbert spaces and interpolation. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1989
[10] Quaternionic and Clifford Calculus for Physicists and Engineers, Mathematical Methods in Practice, 1, Wiley, 1997
[11] Topics in Mathematical System Theory, McGraw-Hill, New York, 1969
[12] Hypercomplex differentiability its applications, Clifford Algebras and their Applications in Mathematical Physics, Deinze, 1993, Fund. Theories Phys., 55, Kluwer Academic, Dordrecht, 1993, pp. 141-150
Cited by Sources:
Comments - Policy