[Condition nulle faible pour les équations d'Einstein]
We show that Einstein's equations of General Relativity expressed in wave coordinates satisfy a ‘weak null condition’. In a forthcoming article we will use this to prove a global existence result for Einstein's equations in wave coordinates with small initial data.
Nous montrons que les équations d'Einstein de la relativité générale exprimées en coordonnées des ondes satisfont une « condition de nullité faible ». Dans un futur article, nous utilisons ceci pour démontrer un résultat global d'existence pour des équations d'Einstein en coordonnées des ondes avec donnèes initiales petites.
Accepté le :
Publié le :
Hans Lindblad 1 ; Igor Rodnianski 2
@article{CRMATH_2003__336_11_901_0, author = {Hans Lindblad and Igor Rodnianski}, title = {The weak null condition for {Einstein's} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {901--906}, publisher = {Elsevier}, volume = {336}, number = {11}, year = {2003}, doi = {10.1016/S1631-073X(03)00231-0}, language = {en}, }
Hans Lindblad; Igor Rodnianski. The weak null condition for Einstein's equations. Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 901-906. doi : 10.1016/S1631-073X(03)00231-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00231-0/
[1] S. Alinhac, An example of blowup at infinity for quasilinear wave equations, Preprint
[2] Rank 2 singular solutions for quasilinear wave equations, Internat. Math. Res. Notices, Volume 18 (2000), pp. 955-984
[3] Un théorème d'instabilité pour certaines équations hyperboliques non linéaires, C. R. Acad. Sci. Paris, Sér. A-B, Volume 276 (1973), p. A281-A284
[4] The null condition and asymptotic expansions for the Einstein's equations, Ann. Phys. (Leipzig), Volume 9 (2000), pp. 258-266
[5] Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math., Volume 39 (1986), pp. 267-282
[6] The Global Nonlinear Stability of the Minkowski Space, Princeton Math. Ser., 41, Princeton University Press, 1993
[7] On the existence of n-geodesically complete or future complete solutions of Einstein's field equations with smooth asymptotic structure, Comm. Math. Phys., Volume 107 (1986) no. 4, pp. 587-609
[8] The lifespan of classical solutions of nonlinear hyperbolic equations, Pseudodifferential Operators (Oberwolfach, 1986), Lecture Notes in Math., 1256, Springer, Berlin, 1987, pp. 214-280
[9] Lectures on Nonlinear Hyperbolic Differential Equations, Springer-Verlag, 1997
[10] Blow-up of radial solutions of utt=c2(ut)Δu in three space dimensions, Mat. Apl. Comput., Volume 4 (1985) no. 1, pp. 3-18
[11] Almost global existence to nonlinear wave equations in three space dimensions, Comm. Pure Appl. Math., Volume 37 (1984), pp. 443-455
[12] The null condition and global existence to nonlinear wave equations, Lectures in Appl. Math., Volume 23 (1986), pp. 293-326
[13] The Evolution Problem in General Relativity, Birkhäuser, 2003
[14] On the lifespan of solutions of nonlinear wave equations with small initial datas, Comm. Pure Appl. Math., Volume 43 (1990), pp. 445-472
[15] Global solutions of nonlinear wave equations, Comm. Pure Appl. Math., Volume 45 (1992) no. 9, pp. 1063-1096
[16] H. Lindblad, I. Rodnianski, Global existence for Einstein's equations in wave coordinates, in preparation
- On the regularity problems of Einstein equations, Comptes Rendus. Mécanique, Volume 353 (2025) no. G1, p. 151 | DOI:10.5802/crmeca.278
- Burnett’s conjecture in general relativity, Comptes Rendus. Mécanique, Volume 353 (2025) no. G1, p. 455 | DOI:10.5802/crmeca.288
- The stability of Minkowski space and its influence on the mathematical analysis of General Relativity, Comptes Rendus. Mécanique, Volume 353 (2025) no. G1, p. 519 | DOI:10.5802/crmeca.287
- Energy estimates for the good-bad-ugly model, General Relativity and Gravitation, Volume 57 (2025) no. 3 | DOI:10.1007/s10714-025-03389-y
- Small data non-linear wave equation numerology: The role of asymptotics, Journal of Differential Equations, Volume 418 (2025), p. 305 | DOI:10.1016/j.jde.2024.11.021
- Wave map null form estimates via Peter–Weyl theory, Journal of Functional Analysis, Volume 289 (2025) no. 6, p. 111040 | DOI:10.1016/j.jfa.2025.111040
- The weak null condition on Kerr backgrounds, Analysis PDE, Volume 17 (2024) no. 8, p. 2971 | DOI:10.2140/apde.2024.17.2971
- Global Stability for Nonlinear Wave Equations Satisfying a Generalized Null Condition, Archive for Rational Mechanics and Analysis, Volume 248 (2024) no. 5 | DOI:10.1007/s00205-024-02025-4
- High-frequency solutions to the Einstein equations, Classical and Quantum Gravity, Volume 41 (2024) no. 14, p. 143002 | DOI:10.1088/1361-6382/ad5487
- Asymptotic Completeness for a Scalar Quasilinear Wave Equation Satisfying the Weak Null Condition, Memoirs of the American Mathematical Society, Volume 298 (2024) no. 1492 | DOI:10.1090/memo/1492
- Polyhomogeneous spin-0 fields in Minkowski space–time, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 382 (2024) no. 2267 | DOI:10.1098/rsta.2023.0045
- Spherical evolution of the generalized harmonic gauge formulation of general relativity on compactified hyperboloidal slices, Physical Review D, Volume 110 (2024) no. 12 | DOI:10.1103/physrevd.110.124033
- The null condition for systems of nonlinear wave equations and its related topics, Sugaku Expositions, Volume 37 (2024) no. 1, p. 79 | DOI:10.1090/suga/491
- Global Stability of Minkowski Space for the Einstein–Maxwell–Klein–Gordon System in Generalized Wave Coordinates, Annales Henri Poincaré, Volume 24 (2023) no. 11, p. 3837 | DOI:10.1007/s00023-023-01331-z
- Global stability for a nonlinear system of anisotropic wave equations, Annals of PDE, Volume 9 (2023) no. 1 | DOI:10.1007/s40818-023-00149-6
- Exterior Stability of Minkowski Space in Generalized Harmonic Gauge, Archive for Rational Mechanics and Analysis, Volume 247 (2023) no. 5 | DOI:10.1007/s00205-023-01931-3
- Regularizing dual-frame generalized harmonic gauge at null infinity, Classical and Quantum Gravity, Volume 40 (2023) no. 2, p. 025011 | DOI:10.1088/1361-6382/aca383
- The good-bad-ugly system near spatial infinity on flat spacetime, Classical and Quantum Gravity, Volume 40 (2023) no. 5, p. 055002 | DOI:10.1088/1361-6382/acb47e
- Geometric Optics Approximation for the Einstein Vacuum Equations, Communications in Mathematical Physics, Volume 402 (2023) no. 3, p. 3109 | DOI:10.1007/s00220-023-04790-x
- Asymptotics and scattering for wave Klein-Gordon systems, Communications in Partial Differential Equations, Volume 48 (2023) no. 9, p. 1102 | DOI:10.1080/03605302.2023.2263205
- Stability and Instability of Traveling Wave Solutions to Nonlinear Wave Equations, International Mathematics Research Notices, Volume 2023 (2023) no. 1, p. 95 | DOI:10.1093/imrn/rnab250
- Scattering from infinity for semilinear wave equations satisfying the null condition or the weak null condition, Journal of Hyperbolic Differential Equations, Volume 20 (2023) no. 01, p. 155 | DOI:10.1142/s0219891623500066
- Spin-0 fields and the NP-constants close to spatial infinity in Minkowski spacetime, Journal of Mathematical Physics, Volume 64 (2023) no. 8 | DOI:10.1063/5.0158746
- 3D evolution of a semilinear wave model for the Einstein field equations on compactified hyperboloidal slices, Physical Review D, Volume 108 (2023) no. 2 | DOI:10.1103/physrevd.108.024067
- A uniqueness theorem for 3D semilinear wave equations satisfying the null condition, Pure and Applied Analysis, Volume 5 (2023) no. 3, p. 601 | DOI:10.2140/paa.2023.5.601
- Geometric optics approximation for the Einstein vacuum equations, Séminaire Laurent Schwartz — EDP et applications (2023), p. 1 | DOI:10.5802/slsedp.159
- On a system of weakly null semilinear wave equations, Analysis and Mathematical Physics, Volume 12 (2022) no. 5 | DOI:10.1007/s13324-022-00730-5
- Global Nonlinear Stability of Large Dispersive Solutions to the Einstein Equations, Annales Henri Poincaré, Volume 23 (2022) no. 7, p. 2391 | DOI:10.1007/s00023-021-01148-8
- Peeling in generalized harmonic gauge, Classical and Quantum Gravity, Volume 39 (2022) no. 21, p. 215003 | DOI:10.1088/1361-6382/ac89c5
- Systems of semilinear wave equations with multiple speeds in two space dimensions and a weaker null condition, Communications on Pure and Applied Analysis, Volume 21 (2022) no. 9, p. 3117 | DOI:10.3934/cpaa.2022092
- Global existence and blow up for systems of nonlinear wave equations related to the weak null condition, Discrete and Continuous Dynamical Systems, Volume 42 (2022) no. 9, p. 4385 | DOI:10.3934/dcds.2022058
- Wave and scattering operators for the nonlinear Klein-Gordon equation on a quarter-plane, Journal of Differential Equations, Volume 321 (2022), p. 66 | DOI:10.1016/j.jde.2022.03.009
- Global existence for systems of nonlinear wave and Klein–Gordon equations in two space dimensions under a kind of the weak null condition, Journal of Evolution Equations, Volume 22 (2022) no. 2 | DOI:10.1007/s00028-022-00809-3
- Global stability of solutions to two-dimension and one-dimension systems of semilinear wave equations, Journal of Functional Analysis, Volume 282 (2022) no. 1, p. 109219 | DOI:10.1016/j.jfa.2021.109219
- Global stability of traveling waves for (1 + 1)-dimensional systems of quasilinear wave equations, Journal of Hyperbolic Differential Equations, Volume 19 (2022) no. 04, p. 549 | DOI:10.1142/s0219891622500163
- Global existence for a system of multiple-speed wave equations violating the null condition, Tohoku Mathematical Journal, Volume 74 (2022) no. 4 | DOI:10.2748/tmj.20210826
- High order asymptotic expansions of a good–bad–ugly wave equation, Classical and Quantum Gravity, Volume 38 (2021) no. 14, p. 145015 | DOI:10.1088/1361-6382/abfed2
- Modified Wave Operators for a Scalar Quasilinear Wave Equation Satisfying the Weak Null Condition, Communications in Mathematical Physics, Volume 382 (2021) no. 3, p. 1961 | DOI:10.1007/s00220-021-03989-0
- Scattering from Infinity of the Maxwell Klein Gordon Equations in Lorenz Gauge, Communications in Mathematical Physics, Volume 386 (2021) no. 3, p. 1747 | DOI:10.1007/s00220-021-04105-y
- A Fuchsian viewpoint on the weak null condition, Journal of Differential Equations, Volume 296 (2021), p. 107 | DOI:10.1016/j.jde.2021.05.056
- Energy decay for small solutions to semilinear wave equations with weakly dissipative structure, Journal of the Mathematical Society of Japan, Volume 73 (2021) no. 3 | DOI:10.2969/jmsj/84148414
- Stability of Minkowski space and polyhomogeneity of the metric, Annals of PDE, Volume 6 (2020) no. 1 | DOI:10.1007/s40818-020-0077-0
- Global Stability of Minkowski Space for the Einstein–Vlasov System in the Harmonic Gauge, Archive for Rational Mechanics and Analysis, Volume 235 (2020) no. 1, p. 517 | DOI:10.1007/s00205-019-01425-1
- The hyperboloidal numerical evolution of a good-bad-ugly wave equation, Classical and Quantum Gravity, Volume 37 (2020) no. 3, p. 035006 | DOI:10.1088/1361-6382/ab5f21
- On the Global Behavior of Weak Null Quasilinear Wave Equations, Communications on Pure and Applied Mathematics, Volume 73 (2020) no. 5, p. 1035 | DOI:10.1002/cpa.21881
- Determination of Space‐Time Structures from Gravitational Perturbations, Communications on Pure and Applied Mathematics, Volume 73 (2020) no. 6, p. 1315 | DOI:10.1002/cpa.21882
- Global Existence for a System of Quasi-Linear Wave Equations in 3D Satisfying the Weak Null Condition, International Mathematics Research Notices, Volume 2020 (2020) no. 1, p. 39 | DOI:10.1093/imrn/rny024
- Scattering for the quasilinear wave equations with null conditions in two dimensions, Journal of Differential Equations, Volume 269 (2020) no. 4, p. 3067 | DOI:10.1016/j.jde.2020.02.024
- The hidden null structure of the compressible Euler equations and a prelude to applications, Journal of Hyperbolic Differential Equations, Volume 17 (2020) no. 01, p. 1 | DOI:10.1142/s0219891620500010
- On Agemi-type structural conditions for a system of semilinear wave equations, Journal of Hyperbolic Differential Equations, Volume 17 (2020) no. 03, p. 459 | DOI:10.1142/s0219891620500125
- Global smooth solutions to 3D irrotational Euler equations for Chaplygin gases, Journal of Hyperbolic Differential Equations, Volume 17 (2020) no. 03, p. 613 | DOI:10.1142/s0219891620500186
- Modified scattering for the mixed initial-boundary problem for the nonlinear Klein–Gordon equation, Nonlinearity, Volume 33 (2020) no. 1, p. 276 | DOI:10.1088/1361-6544/ab4d6e
- Decay and Asymptotics for the One-Dimensional Klein–Gordon Equation with Variable Coefficient Cubic Nonlinearities, SIAM Journal on Mathematical Analysis, Volume 52 (2020) no. 6, p. 6379 | DOI:10.1137/20m1323722
- The weak null condition in free-evolution schemes for numerical relativity: dual foliation GHG with constraint damping, Classical and Quantum Gravity, Volume 36 (2019) no. 19, p. 195016 | DOI:10.1088/1361-6382/ab3f0b
- Averaging Principle for Multiscale Stochastic Klein–Gordon-Heat System, Journal of Nonlinear Science, Volume 29 (2019) no. 4, p. 1701 | DOI:10.1007/s00332-019-09529-4
- Stability of Minkowski Space-Time with a Translation Space-Like Killing Field, Annals of PDE, Volume 4 (2018) no. 1 | DOI:10.1007/s40818-018-0048-x
- The weak null condition and Kaluza–Klein spacetimes, Journal of Hyperbolic Differential Equations, Volume 15 (2018) no. 02, p. 219 | DOI:10.1142/s0219891618500091
- On the Asymptotic Behavior of Solutions to the Einstein Vacuum Equations in Wave Coordinates, Communications in Mathematical Physics, Volume 353 (2017) no. 1, p. 135 | DOI:10.1007/s00220-017-2876-z
- Neumann problem for the nonlinear Klein–Gordon equation, Nonlinear Analysis: Theory, Methods Applications, Volume 149 (2017), p. 81 | DOI:10.1016/j.na.2016.10.014
- Splitting mixed Hodge structures over affine invariant manifolds, Annals of Mathematics (2016), p. 681 | DOI:10.4007/annals.2016.183.2.5
- Global solutions of the Euler–Maxwell two-fluid system in 3D, Annals of Mathematics, Volume 183 (2016) no. 2, p. 377 | DOI:10.4007/annals.2016.183.2.1
- Stability in Exponential Time of Minkowski Space–Time with a Translation Space-Like Killing Field, Annals of PDE, Volume 2 (2016) no. 1 | DOI:10.1007/s40818-016-0012-6
- The resolution of the bounded L 2 curvature conjecture in general relativity, Bulletin of the Brazilian Mathematical Society, New Series, Volume 47 (2016) no. 2, p. 445 | DOI:10.1007/s00574-016-0161-y
- Small-data shock formation in solutions to 3D quasilinear wave equations: An overview, Journal of Hyperbolic Differential Equations, Volume 13 (2016) no. 01, p. 1 | DOI:10.1142/s0219891616500016
- Stability in exponential time of Minkowski space-time with a space-like translation symmetry, Journées équations aux dérivées partielles (2016), p. 1 | DOI:10.5802/jedp.632
- The bounded
L 2 curvature conjecture, Inventiones mathematicae, Volume 202 (2015) no. 1, p. 91 | DOI:10.1007/s00222-014-0567-3 - Semilinear hyperbolic systems violating the null condition, Mathematische Annalen, Volume 361 (2015) no. 1-2, p. 275 | DOI:10.1007/s00208-014-1071-1
- Stability in exponential time of Minkowski space-time with a space-like translation symmetry, Séminaire Laurent Schwartz — EDP et applications (2015), p. 1 | DOI:10.5802/slsedp.77
- The resolution of the bounded L 2 curvature conjecture in general relativity, Séminaire Laurent Schwartz — EDP et applications (2015), p. 1 | DOI:10.5802/slsedp.65
- The global stability of the Minkowski spacetime solution to the Einstein-nonlinear system in wave coordinates, Analysis PDE, Volume 7 (2014) no. 4, p. 771 | DOI:10.2140/apde.2014.7.771
- Global existence of null-form wave equations on small asymptotically Euclidean manifolds, Journal of Functional Analysis, Volume 266 (2014) no. 9, p. 5676 | DOI:10.1016/j.jfa.2014.02.028
- Scattering for the Klein-Gordon equation with quadratic and variable coefficient cubic nonlinearities, Transactions of the American Mathematical Society, Volume 367 (2014) no. 12, p. 8861 | DOI:10.1090/s0002-9947-2014-06455-6
- Space‐Time Resonances and the Null Condition for First‐Order Systems of Wave Equations, Communications on Pure and Applied Mathematics, Volume 66 (2013) no. 10, p. 1495 | DOI:10.1002/cpa.21461
- RECENT RESULTS IN MATHEMATICAL GR, International Journal of Modern Physics D, Volume 22 (2013) no. 06, p. 1330012 | DOI:10.1142/s0218271813300127
- ASYMPTOTIC POINTWISE BEHAVIOR FOR SYSTEMS OF SEMILINEAR WAVE EQUATIONS IN THREE SPACE DIMENSIONS, Journal of Hyperbolic Differential Equations, Volume 09 (2012) no. 02, p. 263 | DOI:10.1142/s0219891612500099
- The global stability of Minkowski space-time in harmonic gauge, Annals of Mathematics, Volume 171 (2010) no. 3, p. 1401 | DOI:10.4007/annals.2010.171.1401
- Fourth-order compact solution of the nonlinear Klein-Gordon equation, Numerical Algorithms, Volume 52 (2009) no. 4, p. 523 | DOI:10.1007/s11075-009-9296-x
- Diffractive nonlinear geometrical optics for variational wave equations and the Einstein equations, Communications on Pure and Applied Mathematics, Volume 60 (2007) no. 10, p. 1522 | DOI:10.1002/cpa.20199
- Remarks on global behavior of solutions to nonlinear Schrödinger equations, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 82 (2006) no. 8 | DOI:10.3792/pjaa.82.117
- Global Existence for the Einstein Vacuum Equations in Wave Coordinates, Communications in Mathematical Physics, Volume 256 (2005) no. 1, p. 43 | DOI:10.1007/s00220-004-1281-6
- Global existence of quasilinear, nonrelativistic wave equations satisfying the null condition, Japanese journal of mathematics. New series, Volume 31 (2005) no. 2, p. 391 | DOI:10.4099/math1924.31.391
- A REMARK ON LONG RANGE SCATTERING FOR THE NONLINEAR KLEIN–GORDON EQUATION, Journal of Hyperbolic Differential Equations, Volume 02 (2005) no. 01, p. 77 | DOI:10.1142/s0219891605000385
- A Remark on Asymptotic Completeness for the Critical Nonlinear Klein-Gordon Equation, Letters in Mathematical Physics, Volume 73 (2005) no. 3, p. 249 | DOI:10.1007/s11005-005-0021-y
- Theorems on Existence and Global Dynamics for the Einstein Equations, Living Reviews in Relativity, Volume 8 (2005) no. 1 | DOI:10.12942/lrr-2005-6
- Large-time behavior of solutions for a nonlinear system of wave equations, Nonlinear Analysis: Theory, Methods Applications, Volume 63 (2005) no. 5-7, p. e2279 | DOI:10.1016/j.na.2005.03.043
- The Global Existence Problem in General Relativity, The Einstein Equations and the Large Scale Behavior of Gravitational Fields (2004), p. 71 | DOI:10.1007/978-3-0348-7953-8_3
Cité par 86 documents. Sources : Crossref
Commentaires - Politique