Comptes Rendus
Partial Differential Equations/Mathematical Physics
The weak null condition for Einstein's equations
[Condition nulle faible pour les équations d'Einstein]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 901-906.

Nous montrons que les équations d'Einstein de la relativité générale exprimées en coordonnées des ondes satisfont une « condition de nullité faible ». Dans un futur article, nous utilisons ceci pour démontrer un résultat global d'existence pour des équations d'Einstein en coordonnées des ondes avec donnèes initiales petites.

We show that Einstein's equations of General Relativity expressed in wave coordinates satisfy a ‘weak null condition’. In a forthcoming article we will use this to prove a global existence result for Einstein's equations in wave coordinates with small initial data.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00231-0

Hans Lindblad 1 ; Igor Rodnianski 2

1 Department of Mathematics, University of California, San Diego, La Jolla, CA, USA
2 Department of Mathematics, Princeton University, Princeton, NJ, USA
@article{CRMATH_2003__336_11_901_0,
     author = {Hans Lindblad and Igor Rodnianski},
     title = {The weak null condition for {Einstein's} equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {901--906},
     publisher = {Elsevier},
     volume = {336},
     number = {11},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00231-0},
     language = {en},
}
TY  - JOUR
AU  - Hans Lindblad
AU  - Igor Rodnianski
TI  - The weak null condition for Einstein's equations
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 901
EP  - 906
VL  - 336
IS  - 11
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00231-0
LA  - en
ID  - CRMATH_2003__336_11_901_0
ER  - 
%0 Journal Article
%A Hans Lindblad
%A Igor Rodnianski
%T The weak null condition for Einstein's equations
%J Comptes Rendus. Mathématique
%D 2003
%P 901-906
%V 336
%N 11
%I Elsevier
%R 10.1016/S1631-073X(03)00231-0
%G en
%F CRMATH_2003__336_11_901_0
Hans Lindblad; Igor Rodnianski. The weak null condition for Einstein's equations. Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 901-906. doi : 10.1016/S1631-073X(03)00231-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00231-0/

[1] S. Alinhac, An example of blowup at infinity for quasilinear wave equations, Preprint

[2] S. Alinhac Rank 2 singular solutions for quasilinear wave equations, Internat. Math. Res. Notices, Volume 18 (2000), pp. 955-984

[3] Y. Choquet-Bruhat Un théorème d'instabilité pour certaines équations hyperboliques non linéaires, C. R. Acad. Sci. Paris, Sér. A-B, Volume 276 (1973), p. A281-A284

[4] Y. Choquet-Bruhat The null condition and asymptotic expansions for the Einstein's equations, Ann. Phys. (Leipzig), Volume 9 (2000), pp. 258-266

[5] D. Christodoulou Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math., Volume 39 (1986), pp. 267-282

[6] D. Christodoulou; S. Klainerman The Global Nonlinear Stability of the Minkowski Space, Princeton Math. Ser., 41, Princeton University Press, 1993

[7] H. Friedrich On the existence of n-geodesically complete or future complete solutions of Einstein's field equations with smooth asymptotic structure, Comm. Math. Phys., Volume 107 (1986) no. 4, pp. 587-609

[8] L. Hörmander The lifespan of classical solutions of nonlinear hyperbolic equations, Pseudodifferential Operators (Oberwolfach, 1986), Lecture Notes in Math., 1256, Springer, Berlin, 1987, pp. 214-280

[9] L. Hörmander Lectures on Nonlinear Hyperbolic Differential Equations, Springer-Verlag, 1997

[10] F. John Blow-up of radial solutions of utt=c2(utu in three space dimensions, Mat. Apl. Comput., Volume 4 (1985) no. 1, pp. 3-18

[11] F. John; S. Klainerman Almost global existence to nonlinear wave equations in three space dimensions, Comm. Pure Appl. Math., Volume 37 (1984), pp. 443-455

[12] S. Klainerman The null condition and global existence to nonlinear wave equations, Lectures in Appl. Math., Volume 23 (1986), pp. 293-326

[13] S. Klainerman; F. Nicolo The Evolution Problem in General Relativity, Birkhäuser, 2003

[14] H. Lindblad On the lifespan of solutions of nonlinear wave equations with small initial datas, Comm. Pure Appl. Math., Volume 43 (1990), pp. 445-472

[15] H. Lindblad Global solutions of nonlinear wave equations, Comm. Pure Appl. Math., Volume 45 (1992) no. 9, pp. 1063-1096

[16] H. Lindblad, I. Rodnianski, Global existence for Einstein's equations in wave coordinates, in preparation

Cité par Sources :

Commentaires - Politique