Comptes Rendus
Partial Differential Equations/Mathematical Physics
The weak null condition for Einstein's equations
[Condition nulle faible pour les équations d'Einstein]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 901-906.

We show that Einstein's equations of General Relativity expressed in wave coordinates satisfy a ‘weak null condition’. In a forthcoming article we will use this to prove a global existence result for Einstein's equations in wave coordinates with small initial data.

Nous montrons que les équations d'Einstein de la relativité générale exprimées en coordonnées des ondes satisfont une « condition de nullité faible ». Dans un futur article, nous utilisons ceci pour démontrer un résultat global d'existence pour des équations d'Einstein en coordonnées des ondes avec donnèes initiales petites.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00231-0

Hans Lindblad 1 ; Igor Rodnianski 2

1 Department of Mathematics, University of California, San Diego, La Jolla, CA, USA
2 Department of Mathematics, Princeton University, Princeton, NJ, USA
@article{CRMATH_2003__336_11_901_0,
     author = {Hans Lindblad and Igor Rodnianski},
     title = {The weak null condition for {Einstein's} equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {901--906},
     publisher = {Elsevier},
     volume = {336},
     number = {11},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00231-0},
     language = {en},
}
TY  - JOUR
AU  - Hans Lindblad
AU  - Igor Rodnianski
TI  - The weak null condition for Einstein's equations
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 901
EP  - 906
VL  - 336
IS  - 11
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00231-0
LA  - en
ID  - CRMATH_2003__336_11_901_0
ER  - 
%0 Journal Article
%A Hans Lindblad
%A Igor Rodnianski
%T The weak null condition for Einstein's equations
%J Comptes Rendus. Mathématique
%D 2003
%P 901-906
%V 336
%N 11
%I Elsevier
%R 10.1016/S1631-073X(03)00231-0
%G en
%F CRMATH_2003__336_11_901_0
Hans Lindblad; Igor Rodnianski. The weak null condition for Einstein's equations. Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 901-906. doi : 10.1016/S1631-073X(03)00231-0. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00231-0/

[1] S. Alinhac, An example of blowup at infinity for quasilinear wave equations, Preprint

[2] S. Alinhac Rank 2 singular solutions for quasilinear wave equations, Internat. Math. Res. Notices, Volume 18 (2000), pp. 955-984

[3] Y. Choquet-Bruhat Un théorème d'instabilité pour certaines équations hyperboliques non linéaires, C. R. Acad. Sci. Paris, Sér. A-B, Volume 276 (1973), p. A281-A284

[4] Y. Choquet-Bruhat The null condition and asymptotic expansions for the Einstein's equations, Ann. Phys. (Leipzig), Volume 9 (2000), pp. 258-266

[5] D. Christodoulou Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math., Volume 39 (1986), pp. 267-282

[6] D. Christodoulou; S. Klainerman The Global Nonlinear Stability of the Minkowski Space, Princeton Math. Ser., 41, Princeton University Press, 1993

[7] H. Friedrich On the existence of n-geodesically complete or future complete solutions of Einstein's field equations with smooth asymptotic structure, Comm. Math. Phys., Volume 107 (1986) no. 4, pp. 587-609

[8] L. Hörmander The lifespan of classical solutions of nonlinear hyperbolic equations, Pseudodifferential Operators (Oberwolfach, 1986), Lecture Notes in Math., 1256, Springer, Berlin, 1987, pp. 214-280

[9] L. Hörmander Lectures on Nonlinear Hyperbolic Differential Equations, Springer-Verlag, 1997

[10] F. John Blow-up of radial solutions of utt=c2(utu in three space dimensions, Mat. Apl. Comput., Volume 4 (1985) no. 1, pp. 3-18

[11] F. John; S. Klainerman Almost global existence to nonlinear wave equations in three space dimensions, Comm. Pure Appl. Math., Volume 37 (1984), pp. 443-455

[12] S. Klainerman The null condition and global existence to nonlinear wave equations, Lectures in Appl. Math., Volume 23 (1986), pp. 293-326

[13] S. Klainerman; F. Nicolo The Evolution Problem in General Relativity, Birkhäuser, 2003

[14] H. Lindblad On the lifespan of solutions of nonlinear wave equations with small initial datas, Comm. Pure Appl. Math., Volume 43 (1990), pp. 445-472

[15] H. Lindblad Global solutions of nonlinear wave equations, Comm. Pure Appl. Math., Volume 45 (1992) no. 9, pp. 1063-1096

[16] H. Lindblad, I. Rodnianski, Global existence for Einstein's equations in wave coordinates, in preparation

  • Qian Wang On the regularity problems of Einstein equations, Comptes Rendus. Mécanique, Volume 353 (2025) no. G1, p. 151 | DOI:10.5802/crmeca.278
  • Arthur Touati Burnett’s conjecture in general relativity, Comptes Rendus. Mécanique, Volume 353 (2025) no. G1, p. 455 | DOI:10.5802/crmeca.288
  • Jacques Smulevici The stability of Minkowski space and its influence on the mathematical analysis of General Relativity, Comptes Rendus. Mécanique, Volume 353 (2025) no. G1, p. 519 | DOI:10.5802/crmeca.287
  • Miguel Duarte Energy estimates for the good-bad-ugly model, General Relativity and Gravitation, Volume 57 (2025) no. 3 | DOI:10.1007/s10714-025-03389-y
  • Istvan Kadar Small data non-linear wave equation numerology: The role of asymptotics, Journal of Differential Equations, Volume 418 (2025), p. 305 | DOI:10.1016/j.jde.2024.11.021
  • Grigalius Taujanskas Wave map null form estimates via Peter–Weyl theory, Journal of Functional Analysis, Volume 289 (2025) no. 6, p. 111040 | DOI:10.1016/j.jfa.2025.111040
  • Hans Lindblad; Mihai Tohaneanu The weak null condition on Kerr backgrounds, Analysis PDE, Volume 17 (2024) no. 8, p. 2971 | DOI:10.2140/apde.2024.17.2971
  • John Anderson; Samuel Zbarsky Global Stability for Nonlinear Wave Equations Satisfying a Generalized Null Condition, Archive for Rational Mechanics and Analysis, Volume 248 (2024) no. 5 | DOI:10.1007/s00205-024-02025-4
  • Cécile Huneau; Jonathan Luk High-frequency solutions to the Einstein equations, Classical and Quantum Gravity, Volume 41 (2024) no. 14, p. 143002 | DOI:10.1088/1361-6382/ad5487
  • Dongxiao Yu Asymptotic Completeness for a Scalar Quasilinear Wave Equation Satisfying the Weak Null Condition, Memoirs of the American Mathematical Society, Volume 298 (2024) no. 1492 | DOI:10.1090/memo/1492
  • Edgar Gasperín Polyhomogeneous spin-0 fields in Minkowski space–time, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 382 (2024) no. 2267 | DOI:10.1098/rsta.2023.0045
  • Christian Peterson; Shalabh Gautam; Alex Vañó-Viñuales; David Hilditch Spherical evolution of the generalized harmonic gauge formulation of general relativity on compactified hyperboloidal slices, Physical Review D, Volume 110 (2024) no. 12 | DOI:10.1103/physrevd.110.124033
  • Soichiro Katayama; the author The null condition for systems of nonlinear wave equations and its related topics, Sugaku Expositions, Volume 37 (2024) no. 1, p. 79 | DOI:10.1090/suga/491
  • Christopher Kauffman; Hans Lindblad Global Stability of Minkowski Space for the Einstein–Maxwell–Klein–Gordon System in Generalized Wave Coordinates, Annales Henri Poincaré, Volume 24 (2023) no. 11, p. 3837 | DOI:10.1007/s00023-023-01331-z
  • John Anderson Global stability for a nonlinear system of anisotropic wave equations, Annals of PDE, Volume 9 (2023) no. 1 | DOI:10.1007/s40818-023-00149-6
  • Peter Hintz Exterior Stability of Minkowski Space in Generalized Harmonic Gauge, Archive for Rational Mechanics and Analysis, Volume 247 (2023) no. 5 | DOI:10.1007/s00205-023-01931-3
  • Miguel Duarte; Justin C Feng; Edgar Gasperín; David Hilditch Regularizing dual-frame generalized harmonic gauge at null infinity, Classical and Quantum Gravity, Volume 40 (2023) no. 2, p. 025011 | DOI:10.1088/1361-6382/aca383
  • Miguel Duarte; Justin Feng; Edgar Gasperín; David Hilditch The good-bad-ugly system near spatial infinity on flat spacetime, Classical and Quantum Gravity, Volume 40 (2023) no. 5, p. 055002 | DOI:10.1088/1361-6382/acb47e
  • Arthur Touati Geometric Optics Approximation for the Einstein Vacuum Equations, Communications in Mathematical Physics, Volume 402 (2023) no. 3, p. 3109 | DOI:10.1007/s00220-023-04790-x
  • Xuantao Chen; Hans Lindblad Asymptotics and scattering for wave Klein-Gordon systems, Communications in Partial Differential Equations, Volume 48 (2023) no. 9, p. 1102 | DOI:10.1080/03605302.2023.2263205
  • John Anderson; Samuel Zbarsky Stability and Instability of Traveling Wave Solutions to Nonlinear Wave Equations, International Mathematics Research Notices, Volume 2023 (2023) no. 1, p. 95 | DOI:10.1093/imrn/rnab250
  • Hans Lindblad; Volker Schlue Scattering from infinity for semilinear wave equations satisfying the null condition or the weak null condition, Journal of Hyperbolic Differential Equations, Volume 20 (2023) no. 01, p. 155 | DOI:10.1142/s0219891623500066
  • Edgar Gasperín; Rafael Pinto Spin-0 fields and the NP-constants close to spatial infinity in Minkowski spacetime, Journal of Mathematical Physics, Volume 64 (2023) no. 8 | DOI:10.1063/5.0158746
  • Christian Peterson; Shalabh Gautam; Inês Rainho; Alex Vañó-Viñuales; David Hilditch 3D evolution of a semilinear wave model for the Einstein field equations on compactified hyperboloidal slices, Physical Review D, Volume 108 (2023) no. 2 | DOI:10.1103/physrevd.108.024067
  • Dongxiao Yu A uniqueness theorem for 3D semilinear wave equations satisfying the null condition, Pure and Applied Analysis, Volume 5 (2023) no. 3, p. 601 | DOI:10.2140/paa.2023.5.601
  • Arthur Touati Geometric optics approximation for the Einstein vacuum equations, Séminaire Laurent Schwartz — EDP et applications (2023), p. 1 | DOI:10.5802/slsedp.159
  • Jason Metcalfe; Alexander Stewart On a system of weakly null semilinear wave equations, Analysis and Mathematical Physics, Volume 12 (2022) no. 5 | DOI:10.1007/s13324-022-00730-5
  • Jonathan Luk; Sung-Jin Oh Global Nonlinear Stability of Large Dispersive Solutions to the Einstein Equations, Annales Henri Poincaré, Volume 23 (2022) no. 7, p. 2391 | DOI:10.1007/s00023-021-01148-8
  • Miguel Duarte; Justin Feng; Edgar Gasperín; David Hilditch Peeling in generalized harmonic gauge, Classical and Quantum Gravity, Volume 39 (2022) no. 21, p. 215003 | DOI:10.1088/1361-6382/ac89c5
  • Minggang Cheng; Soichiro Katayama Systems of semilinear wave equations with multiple speeds in two space dimensions and a weaker null condition, Communications on Pure and Applied Analysis, Volume 21 (2022) no. 9, p. 3117 | DOI:10.3934/cpaa.2022092
  • Kunio Hidano; Kazuyoshi Yokoyama Global existence and blow up for systems of nonlinear wave equations related to the weak null condition, Discrete and Continuous Dynamical Systems, Volume 42 (2022) no. 9, p. 4385 | DOI:10.3934/dcds.2022058
  • Miguel Ballesteros; Diego Iniesta; Ivan Naumkin; Clemente Peña Wave and scattering operators for the nonlinear Klein-Gordon equation on a quarter-plane, Journal of Differential Equations, Volume 321 (2022), p. 66 | DOI:10.1016/j.jde.2022.03.009
  • Minggang Cheng Global existence for systems of nonlinear wave and Klein–Gordon equations in two space dimensions under a kind of the weak null condition, Journal of Evolution Equations, Volume 22 (2022) no. 2 | DOI:10.1007/s00028-022-00809-3
  • Dongbing Zha Global stability of solutions to two-dimension and one-dimension systems of semilinear wave equations, Journal of Functional Analysis, Volume 282 (2022) no. 1, p. 109219 | DOI:10.1016/j.jfa.2021.109219
  • Louis Dongbing Cha; Arick Shao Global stability of traveling waves for (1 + 1)-dimensional systems of quasilinear wave equations, Journal of Hyperbolic Differential Equations, Volume 19 (2022) no. 04, p. 549 | DOI:10.1142/s0219891622500163
  • Kunio Hidano; Kazuyoshi Yokoyama; Dongbing Zha Global existence for a system of multiple-speed wave equations violating the null condition, Tohoku Mathematical Journal, Volume 74 (2022) no. 4 | DOI:10.2748/tmj.20210826
  • Miguel Duarte; Justin Feng; Edgar Gasperín; David Hilditch High order asymptotic expansions of a good–bad–ugly wave equation, Classical and Quantum Gravity, Volume 38 (2021) no. 14, p. 145015 | DOI:10.1088/1361-6382/abfed2
  • Dongxiao Yu Modified Wave Operators for a Scalar Quasilinear Wave Equation Satisfying the Weak Null Condition, Communications in Mathematical Physics, Volume 382 (2021) no. 3, p. 1961 | DOI:10.1007/s00220-021-03989-0
  • Lili He Scattering from Infinity of the Maxwell Klein Gordon Equations in Lorenz Gauge, Communications in Mathematical Physics, Volume 386 (2021) no. 3, p. 1747 | DOI:10.1007/s00220-021-04105-y
  • Todd A. Oliynyk; J. Arturo Olvera-Santamaría A Fuchsian viewpoint on the weak null condition, Journal of Differential Equations, Volume 296 (2021), p. 107 | DOI:10.1016/j.jde.2021.05.056
  • Yoshinori NISHII; Hideaki SUNAGAWA; Hiroki TERASHITA Energy decay for small solutions to semilinear wave equations with weakly dissipative structure, Journal of the Mathematical Society of Japan, Volume 73 (2021) no. 3 | DOI:10.2969/jmsj/84148414
  • Peter Hintz; András Vasy Stability of Minkowski space and polyhomogeneity of the metric, Annals of PDE, Volume 6 (2020) no. 1 | DOI:10.1007/s40818-020-0077-0
  • Hans Lindblad; Martin Taylor Global Stability of Minkowski Space for the Einstein–Vlasov System in the Harmonic Gauge, Archive for Rational Mechanics and Analysis, Volume 235 (2020) no. 1, p. 517 | DOI:10.1007/s00205-019-01425-1
  • Edgar Gasperín; Shalabh Gautam; David Hilditch; Alex Vañó-Viñuales The hyperboloidal numerical evolution of a good-bad-ugly wave equation, Classical and Quantum Gravity, Volume 37 (2020) no. 3, p. 035006 | DOI:10.1088/1361-6382/ab5f21
  • Yu Deng; Fabio Pusateri On the Global Behavior of Weak Null Quasilinear Wave Equations, Communications on Pure and Applied Mathematics, Volume 73 (2020) no. 5, p. 1035 | DOI:10.1002/cpa.21881
  • Gunther Uhlmann; Yiran Wang Determination of Space‐Time Structures from Gravitational Perturbations, Communications on Pure and Applied Mathematics, Volume 73 (2020) no. 6, p. 1315 | DOI:10.1002/cpa.21882
  • Kunio Hidano; Kazuyoshi Yokoyama Global Existence for a System of Quasi-Linear Wave Equations in 3D Satisfying the Weak Null Condition, International Mathematics Research Notices, Volume 2020 (2020) no. 1, p. 39 | DOI:10.1093/imrn/rny024
  • Daoyin He; Jie Liu; Keyan Wang Scattering for the quasilinear wave equations with null conditions in two dimensions, Journal of Differential Equations, Volume 269 (2020) no. 4, p. 3067 | DOI:10.1016/j.jde.2020.02.024
  • Jonathan Luk; Jared Speck The hidden null structure of the compressible Euler equations and a prelude to applications, Journal of Hyperbolic Differential Equations, Volume 17 (2020) no. 01, p. 1 | DOI:10.1142/s0219891620500010
  • Yoshinori Nishii; Hideaki Sunagawa On Agemi-type structural conditions for a system of semilinear wave equations, Journal of Hyperbolic Differential Equations, Volume 17 (2020) no. 03, p. 459 | DOI:10.1142/s0219891620500125
  • Changhua Wei; Yu-Zhu Wang Global smooth solutions to 3D irrotational Euler equations for Chaplygin gases, Journal of Hyperbolic Differential Equations, Volume 17 (2020) no. 03, p. 613 | DOI:10.1142/s0219891620500186
  • Ivan Naumkin Modified scattering for the mixed initial-boundary problem for the nonlinear Klein–Gordon equation, Nonlinearity, Volume 33 (2020) no. 1, p. 276 | DOI:10.1088/1361-6544/ab4d6e
  • Hans Lindblad; Jonas Lührmann; Avy Soffer Decay and Asymptotics for the One-Dimensional Klein–Gordon Equation with Variable Coefficient Cubic Nonlinearities, SIAM Journal on Mathematical Analysis, Volume 52 (2020) no. 6, p. 6379 | DOI:10.1137/20m1323722
  • Edgar Gasperín; David Hilditch The weak null condition in free-evolution schemes for numerical relativity: dual foliation GHG with constraint damping, Classical and Quantum Gravity, Volume 36 (2019) no. 19, p. 195016 | DOI:10.1088/1361-6382/ab3f0b
  • Peng Gao Averaging Principle for Multiscale Stochastic Klein–Gordon-Heat System, Journal of Nonlinear Science, Volume 29 (2019) no. 4, p. 1701 | DOI:10.1007/s00332-019-09529-4
  • Cécile Huneau Stability of Minkowski Space-Time with a Translation Space-Like Killing Field, Annals of PDE, Volume 4 (2018) no. 1 | DOI:10.1007/s40818-018-0048-x
  • Zoe Wyatt The weak null condition and Kaluza–Klein spacetimes, Journal of Hyperbolic Differential Equations, Volume 15 (2018) no. 02, p. 219 | DOI:10.1142/s0219891618500091
  • Hans Lindblad On the Asymptotic Behavior of Solutions to the Einstein Vacuum Equations in Wave Coordinates, Communications in Mathematical Physics, Volume 353 (2017) no. 1, p. 135 | DOI:10.1007/s00220-017-2876-z
  • Ivan Naumkin Neumann problem for the nonlinear Klein–Gordon equation, Nonlinear Analysis: Theory, Methods Applications, Volume 149 (2017), p. 81 | DOI:10.1016/j.na.2016.10.014
  • Simion Filip Splitting mixed Hodge structures over affine invariant manifolds, Annals of Mathematics (2016), p. 681 | DOI:10.4007/annals.2016.183.2.5
  • Yan Guo; Alexandru Ionescu; Benoit Pausader Global solutions of the Euler–Maxwell two-fluid system in 3D, Annals of Mathematics, Volume 183 (2016) no. 2, p. 377 | DOI:10.4007/annals.2016.183.2.1
  • Cécile Huneau Stability in Exponential Time of Minkowski Space–Time with a Translation Space-Like Killing Field, Annals of PDE, Volume 2 (2016) no. 1 | DOI:10.1007/s40818-016-0012-6
  • Sergiu Klainerman; Igor Rodnianski; Jeremie Szeftel The resolution of the bounded L 2 curvature conjecture in general relativity, Bulletin of the Brazilian Mathematical Society, New Series, Volume 47 (2016) no. 2, p. 445 | DOI:10.1007/s00574-016-0161-y
  • Gustav Holzegel; Sergiu Klainerman; Jared Speck; Willie Wai-Yeung Wong Small-data shock formation in solutions to 3D quasilinear wave equations: An overview, Journal of Hyperbolic Differential Equations, Volume 13 (2016) no. 01, p. 1 | DOI:10.1142/s0219891616500016
  • Cécile Huneau Stability in exponential time of Minkowski space-time with a space-like translation symmetry, Journées équations aux dérivées partielles (2016), p. 1 | DOI:10.5802/jedp.632
  • Sergiu Klainerman; Igor Rodnianski; Jeremie Szeftel The bounded L2 L 2 curvature conjecture, Inventiones mathematicae, Volume 202 (2015) no. 1, p. 91 | DOI:10.1007/s00222-014-0567-3
  • Soichiro Katayama; Toshiaki Matoba; Hideaki Sunagawa Semilinear hyperbolic systems violating the null condition, Mathematische Annalen, Volume 361 (2015) no. 1-2, p. 275 | DOI:10.1007/s00208-014-1071-1
  • Cécile Huneau Stability in exponential time of Minkowski space-time with a space-like translation symmetry, Séminaire Laurent Schwartz — EDP et applications (2015), p. 1 | DOI:10.5802/slsedp.77
  • Sergiu Klainerman; Igor Rodnianski; Jérémie Szeftel The resolution of the bounded L 2 curvature conjecture in general relativity, Séminaire Laurent Schwartz — EDP et applications (2015), p. 1 | DOI:10.5802/slsedp.65
  • Jared Speck The global stability of the Minkowski spacetime solution to the Einstein-nonlinear system in wave coordinates, Analysis PDE, Volume 7 (2014) no. 4, p. 771 | DOI:10.2140/apde.2014.7.771
  • Chengbo Wang; Xin Yu Global existence of null-form wave equations on small asymptotically Euclidean manifolds, Journal of Functional Analysis, Volume 266 (2014) no. 9, p. 5676 | DOI:10.1016/j.jfa.2014.02.028
  • Hans Lindblad; Avy Soffer Scattering for the Klein-Gordon equation with quadratic and variable coefficient cubic nonlinearities, Transactions of the American Mathematical Society, Volume 367 (2014) no. 12, p. 8861 | DOI:10.1090/s0002-9947-2014-06455-6
  • Fabio Pusateri; Jalal Shatah Space‐Time Resonances and the Null Condition for First‐Order Systems of Wave Equations, Communications on Pure and Applied Mathematics, Volume 66 (2013) no. 10, p. 1495 | DOI:10.1002/cpa.21461
  • SERGIU KLAINERMAN RECENT RESULTS IN MATHEMATICAL GR, International Journal of Modern Physics D, Volume 22 (2013) no. 06, p. 1330012 | DOI:10.1142/s0218271813300127
  • SOICHIRO KATAYAMA ASYMPTOTIC POINTWISE BEHAVIOR FOR SYSTEMS OF SEMILINEAR WAVE EQUATIONS IN THREE SPACE DIMENSIONS, Journal of Hyperbolic Differential Equations, Volume 09 (2012) no. 02, p. 263 | DOI:10.1142/s0219891612500099
  • Hans Lindblad; Igor Rodnianski The global stability of Minkowski space-time in harmonic gauge, Annals of Mathematics, Volume 171 (2010) no. 3, p. 1401 | DOI:10.4007/annals.2010.171.1401
  • Mehdi Dehghan; Akbar Mohebbi; Zohreh Asgari Fourth-order compact solution of the nonlinear Klein-Gordon equation, Numerical Algorithms, Volume 52 (2009) no. 4, p. 523 | DOI:10.1007/s11075-009-9296-x
  • Giuseppe Alì; John K. Hunter Diffractive nonlinear geometrical optics for variational wave equations and the Einstein equations, Communications on Pure and Applied Mathematics, Volume 60 (2007) no. 10, p. 1522 | DOI:10.1002/cpa.20199
  • Sunagawa Hideaki; Kawahara Yuichiro Remarks on global behavior of solutions to nonlinear Schrödinger equations, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 82 (2006) no. 8 | DOI:10.3792/pjaa.82.117
  • Hans Lindblad; Igor Rodnianski Global Existence for the Einstein Vacuum Equations in Wave Coordinates, Communications in Mathematical Physics, Volume 256 (2005) no. 1, p. 43 | DOI:10.1007/s00220-004-1281-6
  • Jason METCALFE; Makoto NAKAMURA; Christopher D. SOGGE Global existence of quasilinear, nonrelativistic wave equations satisfying the null condition, Japanese journal of mathematics. New series, Volume 31 (2005) no. 2, p. 391 | DOI:10.4099/math1924.31.391
  • HANS LINDBLAD; AVY SOFFER A REMARK ON LONG RANGE SCATTERING FOR THE NONLINEAR KLEIN–GORDON EQUATION, Journal of Hyperbolic Differential Equations, Volume 02 (2005) no. 01, p. 77 | DOI:10.1142/s0219891605000385
  • Hans Lindblad; Avy Soffer A Remark on Asymptotic Completeness for the Critical Nonlinear Klein-Gordon Equation, Letters in Mathematical Physics, Volume 73 (2005) no. 3, p. 249 | DOI:10.1007/s11005-005-0021-y
  • Alan D. Rendall Theorems on Existence and Global Dynamics for the Einstein Equations, Living Reviews in Relativity, Volume 8 (2005) no. 1 | DOI:10.12942/lrr-2005-6
  • Hideo Kubo Large-time behavior of solutions for a nonlinear system of wave equations, Nonlinear Analysis: Theory, Methods Applications, Volume 63 (2005) no. 5-7, p. e2279 | DOI:10.1016/j.na.2005.03.043
  • Lars Andersson The Global Existence Problem in General Relativity, The Einstein Equations and the Large Scale Behavior of Gravitational Fields (2004), p. 71 | DOI:10.1007/978-3-0348-7953-8_3

Cité par 86 documents. Sources : Crossref

Commentaires - Politique