Comptes Rendus
Harmonic Analysis/Functional Analysis
BMO is the intersection of two translates of dyadic BMO
[BMO est l'intersection de deux translatés de BMO dyadique]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 12, pp. 1003-1006.

Soit 𝕋 le cercle unité dans 2. On note BMO(𝕋) l'espace BMO classique et l'on note BMO𝒟(𝕋) l'espace BMO dyadique usuel sur 𝕋. Pour certaines valeurs de δ, nous montrons que l'espace BMO(𝕋) coı̈ncide avec l'intersection de BMO𝒟(𝕋) et du translaté par δ de BMO𝒟(𝕋), en d'autres termes que l'on a

ϕBMO(𝕋)ϕBMO𝒟(𝕋)+ϕ(·-2δπ)BMO𝒟(𝕋),ϕBMO(𝕋).

Let 𝕋 be the unit circle on 2. Denote by BMO(𝕋) the classical BMO space and denote by BMO𝒟(𝕋) the usual dyadic BMO space on 𝕋. Then, for suitably chosen δ, we have

ϕBMO(𝕋)ϕBMO𝒟(𝕋)+ϕ(·-2δπ)BMO𝒟(𝕋),ϕBMO(𝕋).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00234-6

Tao Mei 1

1 Mathematics Department, Texas A&M University, College Station, TX 77843, USA
@article{CRMATH_2003__336_12_1003_0,
     author = {Tao Mei},
     title = {BMO is the intersection of two translates of dyadic {BMO}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1003--1006},
     publisher = {Elsevier},
     volume = {336},
     number = {12},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00234-6},
     language = {en},
}
TY  - JOUR
AU  - Tao Mei
TI  - BMO is the intersection of two translates of dyadic BMO
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 1003
EP  - 1006
VL  - 336
IS  - 12
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00234-6
LA  - en
ID  - CRMATH_2003__336_12_1003_0
ER  - 
%0 Journal Article
%A Tao Mei
%T BMO is the intersection of two translates of dyadic BMO
%J Comptes Rendus. Mathématique
%D 2003
%P 1003-1006
%V 336
%N 12
%I Elsevier
%R 10.1016/S1631-073X(03)00234-6
%G en
%F CRMATH_2003__336_12_1003_0
Tao Mei. BMO is the intersection of two translates of dyadic BMO. Comptes Rendus. Mathématique, Volume 336 (2003) no. 12, pp. 1003-1006. doi : 10.1016/S1631-073X(03)00234-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00234-6/

[1] J.B. Garnett; P.W. Jones BMO from dyadic BMO, Pacific J. Math., Volume 99 (1982) no. 2, pp. 351-371

[2] J.B. Garnett Bounded Analytic Functions, Pure Appl. Math., 96, Academic Press, New York, 1981

[3] T. Mei, Operator valued Hardy spaces, Preprint

[4] S. Petermichl Dyadic shifts and a logarithmic estimate for Hankel operator with matrix symbol, C. R. Acad. Sci. Paris, Ser. I, Volume 330 (2000), pp. 455-460

Cité par Sources :

Commentaires - Politique