We prove a new inequality for the Jacobian (or vorticity) associated to the Ginzburg–Landau energy in any dimension, and give static and dynamical corollaries. We then present a method to prove convergence of gradient-flows of families of energies which Gamma-converge to a limiting energy, which we apply to establish, thanks to the previous dynamical estimate, the limiting dynamical law of a finite number of vortices for the heat-flow of Ginzburg–Landau in dimension 2, with and without magnetic field.
Nous prouvons une nouvelle inégalite sur le jacobien (ou vorticité) associé à l'énergie de Ginzburg–Landau en dimension quelconque, et en donnons des corollaires statiques et dynamiques. Nous présentons ensuite une méthode pour prouver la convergence de flots-gradient associés à une famille d'énergies qui Gamma-convergent vers une énergie limite, que nous appliquons pour établir à l'aide de l'estimée dynamique précédemment obtenue, la loi limite de la dynamique d'un nombre fini de vortex pour le flot (de la chaleur) de Ginzburg–Landau en dimension 2 avec et sans champ magnétique.
Published online:
Etienne Sandier 1; Sylvia Serfaty 2
@article{CRMATH_2003__336_12_997_0, author = {Etienne Sandier and Sylvia Serfaty}, title = {A product estimate for {Ginzburg{\textendash}Landau} and application to the gradient-flow}, journal = {Comptes Rendus. Math\'ematique}, pages = {997--1002}, publisher = {Elsevier}, volume = {336}, number = {12}, year = {2003}, doi = {10.1016/S1631-073X(03)00224-3}, language = {en}, }
TY - JOUR AU - Etienne Sandier AU - Sylvia Serfaty TI - A product estimate for Ginzburg–Landau and application to the gradient-flow JO - Comptes Rendus. Mathématique PY - 2003 SP - 997 EP - 1002 VL - 336 IS - 12 PB - Elsevier DO - 10.1016/S1631-073X(03)00224-3 LA - en ID - CRMATH_2003__336_12_997_0 ER -
Etienne Sandier; Sylvia Serfaty. A product estimate for Ginzburg–Landau and application to the gradient-flow. Comptes Rendus. Mathématique, Volume 336 (2003) no. 12, pp. 997-1002. doi : 10.1016/S1631-073X(03)00224-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00224-3/
[1] G. Alberti, S. Baldo, G. Orlandi, Variational convergence for functionals of Ginzburg–Landau type, prépublication
[2] Ginzburg–Landau Vortices, Birkhäuser, 1994
[3] Lower bounds for generalized Ginzburg–Landau functionals, SIAM J. Math. Anal., Volume 30 (1999) no. 4, pp. 721-746
[4] Vortex dynamics for the Ginzburg–Landau wave equation, Calc. Var. Partial Differential Equations, Volume 9 (1999), pp. 1-30
[5] Dynamics of Ginzburg–Landau vortices, Arch. Rational Mech. Anal., Volume 142 (1998) no. 2, pp. 99-125
[6] The Jacobian and the Ginzburg–Landau functional, Calc. Var. Partial Differential Equations, Volume 14 (2002) no. 2, pp. 151-191
[7] Some dynamical properties of Ginzburg–Landau vortices, CPAM, Volume 49 (1996), pp. 323-359
[8] Lower bounds for the energy of unit vector fields and applications, J. Functional Anal., Volume 152 (1998) no. 2, pp. 379-403
[9] E. Sandier, S. Serfaty, A product-estimate for Ginzburg–Landau and corollaries, prépublication
[10] E. Sandier, S. Serfaty, Gamma-convergence of gradient-flows and application to Ginzburg–Landau, à paraı̂tre
[11] Vortex dynamics for the full time-dependent Ginzburg–Landau equations, CPAM, Volume 55 (2002) no. 5, pp. 537-581
Cited by Sources:
Comments - Policy