[Existence d'une solution faible pour un problème d'interaction fluide visqueux incompressible-solide élastique]
We study here the two dimensional motion of an elastic body immersed in an incompressible viscous fluid. The body and the fluid are contained in a fixed bounded set
Nous étudions ici le mouvement d'un solide élastique immergé dans un fluide visqueux incompressible en dimension 2. L'ensemble fluide-structure évolue dans une cavité fixe bornée
Accepté le :
Publié le :
Muriel Boulakia 1
@article{CRMATH_2003__336_12_985_0, author = {Muriel Boulakia}, title = {Existence of weak solutions for the motion of an elastic structure in an incompressible viscous fluid}, journal = {Comptes Rendus. Math\'ematique}, pages = {985--990}, publisher = {Elsevier}, volume = {336}, number = {12}, year = {2003}, doi = {10.1016/S1631-073X(03)00235-8}, language = {en}, }
TY - JOUR AU - Muriel Boulakia TI - Existence of weak solutions for the motion of an elastic structure in an incompressible viscous fluid JO - Comptes Rendus. Mathématique PY - 2003 SP - 985 EP - 990 VL - 336 IS - 12 PB - Elsevier DO - 10.1016/S1631-073X(03)00235-8 LA - en ID - CRMATH_2003__336_12_985_0 ER -
Muriel Boulakia. Existence of weak solutions for the motion of an elastic structure in an incompressible viscous fluid. Comptes Rendus. Mathématique, Volume 336 (2003) no. 12, pp. 985-990. doi : 10.1016/S1631-073X(03)00235-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00235-8/
[1] Lr regularity for the Stokes and Navier–Stokes problems, Ann. Math. Pura Appl., Volume 170 (1996), pp. 187-206
[2] Weak solutions for a fluid-elastic structure interaction model, Rev. Mat. Complut., Volume 14 (2001), pp. 523-538
[3] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989), pp. 511-547
[4] Mathematical Topics in Fluid Mechanics, Oxford Science Publications, 1996
- Modeling and mathematical theory on fluid structure interaction models in aircraft engines, SCIENTIA SINICA Mathematica, Volume 55 (2025) no. 3, p. 753 | DOI:10.1360/ssm-2024-0028
- The exponential stabilization of a heat-wave coupled system and its approximation, Journal of Mathematical Analysis and Applications, Volume 521 (2023) no. 1, p. 20 (Id/No 126927) | DOI:10.1016/j.jmaa.2022.126927 | Zbl:1506.65134
- Boundary stabilization of an elastic body surrounding a viscous incompressible fluid, Automatica, Volume 141 (2022), p. 10 (Id/No 110307) | DOI:10.1016/j.automatica.2022.110307 | Zbl:1491.93090
- Moving boundary problems, Bulletin of the American Mathematical Society. New Series, Volume 58 (2021) no. 1, pp. 79-106 | DOI:10.1090/bull/1703 | Zbl:1462.76038
- Existence for a quasi-static interaction problem between a viscous fluid and an active structure, Journal of Mathematical Fluid Mechanics, Volume 23 (2021) no. 2, p. 27 (Id/No 45) | DOI:10.1007/s00021-020-00552-0 | Zbl:1468.35135
- Existence of global weak solutions for the high frequency and small displacement oscillation fluid-structure interaction systems, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 5, pp. 3249-3259 | DOI:10.1002/mma.6936 | Zbl:1475.35242
- Minimizing drag in a moving boundary fluid-elasticity interaction, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 197 (2020), p. 43 (Id/No 111837) | DOI:10.1016/j.na.2020.111837 | Zbl:1445.49002
- Fluid-Structure Interaction with Incompressible Fluids, Progress in Mathematical Fluid Dynamics, Volume 2272 (2020), p. 15 | DOI:10.1007/978-3-030-54899-5_2
- Analysis of a 3D nonlinear, moving boundary problem describing fluid-mesh-shell interaction, Transactions of the American Mathematical Society, Volume 373 (2020) no. 9, pp. 6621-6681 | DOI:10.1090/tran/8125 | Zbl:1448.74031
- On the differentiability of fluid-structure interaction problems with respect to the problem data, Journal of Mathematical Fluid Mechanics, Volume 21 (2019) no. 3, p. 21 (Id/No 34) | DOI:10.1007/s00021-019-0439-0 | Zbl:1418.35316
- Spectrum and stability of a
heat-wave coupled system with dynamical boundary control, Mathematical Problems in Engineering, Volume 2019 (2019), p. 9 (Id/No 5716729) | DOI:10.1155/2019/5716729 | Zbl:1435.35196 - An energy stable monolithic Eulerian fluid-structure numerical scheme, Chinese Annals of Mathematics. Series B, Volume 39 (2018) no. 2, pp. 213-232 | DOI:10.1007/s11401-018-1061-9 | Zbl:1386.76104
- Numerical Study of a 3D Eulerian Monolithic Formulation for Incompressible Fluid-Structures Systems, Fluids, Volume 2 (2017) no. 2, p. 34 | DOI:10.3390/fluids2020034
- An energy stable monolithic Eulerian fluid‐structure finite element method, International Journal for Numerical Methods in Fluids, Volume 85 (2017) no. 7, p. 430 | DOI:10.1002/fld.4388
- Existence of 3D strong solutions for a system modeling a deformable solid inside a viscous incompressible fluid, Journal of Dynamics and Differential Equations, Volume 29 (2017) no. 2, pp. 737-782 | DOI:10.1007/s10884-015-9494-2 | Zbl:1375.35310
- Fluid-structure interaction in hemodynamics: modeling, analysis, and numerical simulation, Fluid-structure interaction and biomedical applications, Basel: Birkhäuser/Springer, 2014, pp. 79-195 | DOI:10.1007/978-3-0348-0822-4_2 | Zbl:1371.74086
- A fluid-structure model coupling the Navier-Stokes equations and the Lamé system, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 102 (2014) no. 3, pp. 546-596 | DOI:10.1016/j.matpur.2013.12.004 | Zbl:1303.35060
- Existence of a solution to a fluid–multi-layered-structure interaction problem, Journal of Differential Equations, Volume 256 (2014) no. 2, p. 658 | DOI:10.1016/j.jde.2013.09.016
- Stability analysis of an interactive system of wave equation and heat equation with memory, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 65 (2014) no. 5, pp. 905-923 | DOI:10.1007/s00033-013-0366-5 | Zbl:1316.35043
- Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls, Archive for Rational Mechanics and Analysis, Volume 207 (2013) no. 3, pp. 919-968 | DOI:10.1007/s00205-012-0585-5 | Zbl:1260.35148
- On the stability of self-propelled bodies with respect to their shape motion, M
AS. Mathematical Models Methods in Applied Sciences, Volume 21 (2011) no. 4, pp. 667-691 | DOI:10.1142/s0218202511005179 | Zbl:1268.76074 - An initial and boundary value problem modeling of fish-like swimming, Archive for Rational Mechanics and Analysis, Volume 188 (2008) no. 3, pp. 429-455 | DOI:10.1007/s00205-007-0092-2 | Zbl:1138.76072
- Existence of Weak Solutions for the Unsteady Interaction of a Viscous Fluid with an Elastic Plate, SIAM Journal on Mathematical Analysis, Volume 40 (2008) no. 2, p. 716 | DOI:10.1137/070699196
- Controllability and Observability of Partial Differential Equations: Some Results and Open Problems, Volume 3 (2007), p. 527 | DOI:10.1016/s1874-5717(07)80010-7
- Existence of weak solutions for the three-dimensional motion of an elastic structure in an incompressible fluid, Journal of Mathematical Fluid Mechanics, Volume 9 (2007) no. 2, pp. 262-294 | DOI:10.1007/s00021-005-0201-7 | Zbl:1171.74337
- Asymptotic Behavior of a Hyperbolic-parabolic Coupled System Arising in Fluid-structure Interaction, Free Boundary Problems, Volume 154 (2006), p. 445 | DOI:10.1007/978-3-7643-7719-9_43
- Lack of collision in a simplified 1D model for fluid-solid interaction, M
AS. Mathematical Models Methods in Applied Sciences, Volume 16 (2006) no. 5, pp. 637-678 | DOI:10.1142/s0218202506001303 | Zbl:1387.35634 - Existence of weak solutions for an interaction problem between an elastic structure and a compressible viscous fluid, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 84 (2005) no. 11, pp. 1515-1554 | DOI:10.1016/j.matpur.2005.08.004 | Zbl:1159.35395
- Polynomial decay and control of a 1D hyperbolic-parabolic coupled system, Journal of Differential Equations, Volume 204 (2004) no. 2, pp. 380-438 | DOI:10.1016/j.jde.2004.02.004 | Zbl:1064.93008
Cité par 29 documents. Sources : Crossref, zbMATH
Commentaires - Politique