[Existence d'une solution faible pour un problème d'interaction fluide visqueux incompressible-solide élastique]
We study here the two dimensional motion of an elastic body immersed in an incompressible viscous fluid. The body and the fluid are contained in a fixed bounded set
Nous étudions ici le mouvement d'un solide élastique immergé dans un fluide visqueux incompressible en dimension 2. L'ensemble fluide-structure évolue dans une cavité fixe bornée
Accepté le :
Publié le :
Muriel Boulakia 1
@article{CRMATH_2003__336_12_985_0, author = {Muriel Boulakia}, title = {Existence of weak solutions for the motion of an elastic structure in an incompressible viscous fluid}, journal = {Comptes Rendus. Math\'ematique}, pages = {985--990}, publisher = {Elsevier}, volume = {336}, number = {12}, year = {2003}, doi = {10.1016/S1631-073X(03)00235-8}, language = {en}, }
TY - JOUR AU - Muriel Boulakia TI - Existence of weak solutions for the motion of an elastic structure in an incompressible viscous fluid JO - Comptes Rendus. Mathématique PY - 2003 SP - 985 EP - 990 VL - 336 IS - 12 PB - Elsevier DO - 10.1016/S1631-073X(03)00235-8 LA - en ID - CRMATH_2003__336_12_985_0 ER -
Muriel Boulakia. Existence of weak solutions for the motion of an elastic structure in an incompressible viscous fluid. Comptes Rendus. Mathématique, Volume 336 (2003) no. 12, pp. 985-990. doi : 10.1016/S1631-073X(03)00235-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00235-8/
[1] Lr regularity for the Stokes and Navier–Stokes problems, Ann. Math. Pura Appl., Volume 170 (1996), pp. 187-206
[2] Weak solutions for a fluid-elastic structure interaction model, Rev. Mat. Complut., Volume 14 (2001), pp. 523-538
[3] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989), pp. 511-547
[4] Mathematical Topics in Fluid Mechanics, Oxford Science Publications, 1996
Cité par Sources :
Commentaires - Politique