[Une variante de l'inégalité de Poincaré]
We show that if , is a bounded Lipschitz domain and is a sequence of nonnegative radial functions weakly converging to δ0 then there exist C>0 and n0⩾1 such that
Soit , un domaine lipschitzien borné. Étant donnée une suite de fonctions radiales positives qui converge vers la masse de Dirac δ0 on montre qu'il existe C>0 et n0⩾1 tels que
Accepté le :
Publié le :
Augusto C. Ponce 1, 2
@article{CRMATH_2003__337_4_253_0,
author = {Augusto C. Ponce},
title = {A variant of {Poincar\'e's} inequality},
journal = {Comptes Rendus. Math\'ematique},
pages = {253--257},
year = {2003},
publisher = {Elsevier},
volume = {337},
number = {4},
doi = {10.1016/S1631-073X(03)00313-3},
language = {en},
}
Augusto C. Ponce. A variant of Poincaré's inequality. Comptes Rendus. Mathématique, Volume 337 (2003) no. 4, pp. 253-257. doi: 10.1016/S1631-073X(03)00313-3
[1] J. Bourgain, H. Brezis, personal communication
[2] Another look at Sobolev spaces (J.L. Menaldi; E. Rofman; A. Sulem, eds.), Optimal Control and Partial Differential Equations, IOS Press, 2001, pp. 439-455 (A volume in honour of A. Benssoussan's 60th birthday)
[3] Limiting embedding theorems for Ws,p when s↑1 and applications, J. Anal. Math., Volume 87 (2002), pp. 77-101 (Dedicated to the memory of Thomas H. Wolff)
[4] J. Bourgain, H. Brezis, P. Mironescu, H1/2 maps with values into the circle: minimal connections, lifting, and the Ginzburg–Landau equation, in press
[5] How to recognize constant functions. Connections with Sobolev spaces, Uspekhi Mat. Nauk, Volume 57 (2002), pp. 59-74 (in Russian). English version: Russian Math. Surveys, 57, 2002, pp. 693-708 Volume in honor of M. Vishik
[6] On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., Volume 195 (2002), pp. 230-238 (Erratum J. Funct. Anal., 201, 2003, pp. 298-300)
[7] A.C. Ponce, An estimate in the spirit of Poincaré's inequality, J. Eur. Math. Soc., in press
Cité par Sources :
Commentaires - Politique
