Comptes Rendus
Partial Differential Equations
A variant of Poincaré's inequality
[Une variante de l'inégalité de Poincaré]
Comptes Rendus. Mathématique, Volume 337 (2003) no. 4, pp. 253-257.

We show that if ΩN,N2, is a bounded Lipschitz domain and (ρn)L1(N) is a sequence of nonnegative radial functions weakly converging to δ0 then there exist C>0 and n0⩾1 such that

Ωf-ΩfpCΩΩ|f(x)-f(y)|p|x-y|pρn(|x-y|)dxdyfLp(Ω)nn0.
The above estimate was suggested by some recent work of Bourgain, Brezis and Mironescu (in: Optimal Control and Partial Differential Equations, IOS Press, 2001, pp. 439–455). As n→∞ in (1) we recover Poincaré's inequality. We also extend a compactness result of Bourgain, Brezis and Mironescu.

Soit ΩN,N2, un domaine lipschitzien borné. Étant donnée une suite de fonctions radiales positives (ρn)L1(N) qui converge vers la masse de Dirac δ0 on montre qu'il existe C>0 et n0⩾1 tels que

Ωf-ΩfpCΩΩ|f(x)-f(y)|p|x-y|pρn(|x-y|)dxdyfLp(Ω)nn0.
Cette estimation a été motivée par un travail récent de Bourgain, Brezis et Mironescu (dans : Optimal Control and Partial Differential Equations, IOS Press, 2001, pp. 439–455). En prenant la limite dans (2) lorsque n→∞, on retrouve l'inégalité de Poincaré. On généralise aussi un théorème de compacité de Bourgain, Brezis et Mironescu.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00313-3

Augusto C. Ponce 1, 2

1 Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, BC 187, 4, pl. Jussieu, 75252 Paris cedex 05, France
2 Rutgers University, Dept. of Math., Hill Center, Busch Campus, 110 Frelinghuysen Rd, Piscataway, NJ 08854, USA
@article{CRMATH_2003__337_4_253_0,
     author = {Augusto C. Ponce},
     title = {A variant of {Poincar\'e's} inequality},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {253--257},
     publisher = {Elsevier},
     volume = {337},
     number = {4},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00313-3},
     language = {en},
}
TY  - JOUR
AU  - Augusto C. Ponce
TI  - A variant of Poincaré's inequality
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 253
EP  - 257
VL  - 337
IS  - 4
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00313-3
LA  - en
ID  - CRMATH_2003__337_4_253_0
ER  - 
%0 Journal Article
%A Augusto C. Ponce
%T A variant of Poincaré's inequality
%J Comptes Rendus. Mathématique
%D 2003
%P 253-257
%V 337
%N 4
%I Elsevier
%R 10.1016/S1631-073X(03)00313-3
%G en
%F CRMATH_2003__337_4_253_0
Augusto C. Ponce. A variant of Poincaré's inequality. Comptes Rendus. Mathématique, Volume 337 (2003) no. 4, pp. 253-257. doi : 10.1016/S1631-073X(03)00313-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00313-3/

[1] J. Bourgain, H. Brezis, personal communication

[2] J. Bourgain; H. Brezis; P. Mironescu Another look at Sobolev spaces (J.L. Menaldi; E. Rofman; A. Sulem, eds.), Optimal Control and Partial Differential Equations, IOS Press, 2001, pp. 439-455 (A volume in honour of A. Benssoussan's 60th birthday)

[3] J. Bourgain; H. Brezis; P. Mironescu Limiting embedding theorems for Ws,p when s↑1 and applications, J. Anal. Math., Volume 87 (2002), pp. 77-101 (Dedicated to the memory of Thomas H. Wolff)

[4] J. Bourgain, H. Brezis, P. Mironescu, H1/2 maps with values into the circle: minimal connections, lifting, and the Ginzburg–Landau equation, in press

[5] H. Brezis How to recognize constant functions. Connections with Sobolev spaces, Uspekhi Mat. Nauk, Volume 57 (2002), pp. 59-74 (in Russian). English version: Russian Math. Surveys, 57, 2002, pp. 693-708 Volume in honor of M. Vishik

[6] V. Maz'ya; T. Shaposhnikova On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., Volume 195 (2002), pp. 230-238 (Erratum J. Funct. Anal., 201, 2003, pp. 298-300)

[7] A.C. Ponce, An estimate in the spirit of Poincaré's inequality, J. Eur. Math. Soc., in press

Cité par 3 documents. Sources : zbMATH

Commentaires - Politique