Comptes Rendus
Partial Differential Equations
Lifting of BV functions with values in S1
[Relèvement des fonctions BV à valeurs sur le cercle S1]
Comptes Rendus. Mathématique, Volume 337 (2003) no. 3, pp. 159-164.

On montre que pour tout , il existe une fonction à variation bornée telle que u=eiϕ p.p. dans et |ϕ|BV⩽2|u|BV. La constante 2 est optimale en dimension n>1.

We show that for every , there exists a bounded variation function such that u=eiϕ a.e. on and |ϕ|BV⩽2|u|BV. The constant 2 is optimal in dimension n>1.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00314-5

Juan Dávila 1 ; Radu Ignat 2

1 Departamento de Ingenierı́a Matemática, CMM (UMR CNRS), Universidad de Chile, Casilla 170/3, Correo 3, Santiago, Chile
2 École normale supérieure, 45, rue d'Ulm, 75230 Paris cedex 05, France
@article{CRMATH_2003__337_3_159_0,
     author = {Juan D\'avila and Radu Ignat},
     title = {Lifting of {BV} functions with values in {\protect\emph{S}\protect\textsuperscript{1}}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {159--164},
     publisher = {Elsevier},
     volume = {337},
     number = {3},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00314-5},
     language = {en},
}
TY  - JOUR
AU  - Juan Dávila
AU  - Radu Ignat
TI  - Lifting of BV functions with values in S1
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 159
EP  - 164
VL  - 337
IS  - 3
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00314-5
LA  - en
ID  - CRMATH_2003__337_3_159_0
ER  - 
%0 Journal Article
%A Juan Dávila
%A Radu Ignat
%T Lifting of BV functions with values in S1
%J Comptes Rendus. Mathématique
%D 2003
%P 159-164
%V 337
%N 3
%I Elsevier
%R 10.1016/S1631-073X(03)00314-5
%G en
%F CRMATH_2003__337_3_159_0
Juan Dávila; Radu Ignat. Lifting of BV functions with values in S1. Comptes Rendus. Mathématique, Volume 337 (2003) no. 3, pp. 159-164. doi : 10.1016/S1631-073X(03)00314-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00314-5/

[1] L. Ambrosio; G. Dal Maso A general chain rule for distributional derivatives, Proc. Amer. Math. Soc., Volume 108 (1990), pp. 691-702

[2] L. Ambrosio; N. Fusco; D. Pallara Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, Oxford, 2000

[3] F. Bethuel; X.M. Zheng Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., Volume 80 (1988), pp. 60-75

[4] J. Bourgain; H. Brezis; P. Mironescu Lifting in Sobolev spaces, J. Anal. Math., Volume 80 (2000), pp. 37-86

[5] J. Bourgain, H. Brezis, P. Mironescu, H1/2 maps with values into the circle: minimal connections, lifting and the Ginzburg–Landau equation, in press

[6] H. Brezis; L. Nirenberg Degree theory and BMO. I. Compact manifolds without boundaries, Selecta Math. (N.S.), Volume 1 (1995), pp. 197-263

[7] R.R. Coifman; Y. Meyer Une généralisation du théorème de Calderón sur l'intégrale de Cauchy, Fourier Analysis (Proc. Sem., El Escorial, 1979), Asoc. Mat. Española, Madrid, 1980, pp. 87-116

[8] M. Giaquinta; G. Modica; J. Soucek Cartesian Currents in the Calculus of Variations, Vol. II, Springer, 1998

  • M. Goldman; B. Merlet; M. Pegon; S. Serfaty Compactness and structure of zero-states for unoriented Aviles-Giga functionals, Journal of the Institute of Mathematics of Jussieu, Volume 23 (2024) no. 2, pp. 941-982 | DOI:10.1017/s1474748023000075 | Zbl:1535.49037
  • Giovanni Bellettini; Riccardo Scala; Giuseppe Scianna Upper bounds for the relaxed area of S1-valued Sobolev maps and its countably subadditive interior envelope, Revista Matemática Iberoamericana, Volume 40 (2024) no. 6, pp. 2135-2178 | DOI:10.4171/rmi/1475 | Zbl:7958542
  • Michael Goldman; Benoit Merlet; Vincent Millot A Ginzburg-Landau model with topologically induced free discontinuities, Annales de l'Institut Fourier, Volume 70 (2020) no. 6, pp. 2583-2675 | DOI:10.5802/aif.3388 | Zbl:1468.35191
  • Giacomo Canevari; Giandomenico Orlandi Topological singularities for vector-valued Sobolev maps and applications, Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série VI, Volume 30 (2021) no. 2, pp. 327-351 | DOI:10.5802/afst.1677 | Zbl:1471.58009
  • Giacomo Canevari; Giandomenico Orlandi Improved partial regularity for manifold-constrained minimisers of subquadratic energies, Communications in Mathematical Physics, Volume 374 (2020) no. 3, pp. 1483-1495 | DOI:10.1007/s00220-019-03675-2 | Zbl:1433.76015
  • Giacomo Canevari; Giandomenico Orlandi Lifting for manifold-valued maps of bounded variation, Journal of Functional Analysis, Volume 278 (2020) no. 10, p. 17 (Id/No 108453) | DOI:10.1016/j.jfa.2019.108453 | Zbl:1442.53011
  • Eduard Curcă Minimal BV-liftings of W1,1(Ω,S1) maps in 2D are “often” unique, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 199 (2020), p. 13 (Id/No 111943) | DOI:10.1016/j.na.2020.111943 | Zbl:1462.46036
  • Giacomo Canevari; Giandomenico Orlandi Topological singular set of vector-valued maps. I: Applications to manifold-constrained Sobolev and BV spaces, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 2, p. 40 (Id/No 72) | DOI:10.1007/s00526-019-1501-8 | Zbl:1411.58004
  • Radu Ignat; Xavier Lamy Lifting of RPd1-valued maps in BV and applications to uniaxial Q-tensors. With an appendix on an intrinsic BV-energy for manifold-valued maps, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 2, p. 26 (Id/No 68) | DOI:10.1007/s00526-019-1511-6 | Zbl:1411.49032
  • Giacomo Canevari; Antonio Segatti Defects in nematic shells: a Γ-convergence discrete-to-continuum approach, Archive for Rational Mechanics and Analysis, Volume 229 (2018) no. 1, pp. 125-186 | DOI:10.1007/s00205-017-1215-z | Zbl:1401.82047
  • Haim Brezis; Petru Mironescu; Itai Shafrir Distances between classes in W1,1(Ω;S1), Calculus of Variations and Partial Differential Equations, Volume 57 (2018) no. 1, p. 32 (Id/No 14) | DOI:10.1007/s00526-017-1280-z | Zbl:1404.58019
  • Rufat Badal; Marco Cicalese; Lucia De Luca; Marcello Ponsiglione Γ-convergence analysis of a generalized XY model: fractional vortices and string defects, Communications in Mathematical Physics, Volume 358 (2018) no. 2, pp. 705-739 | DOI:10.1007/s00220-017-3026-3 | Zbl:1394.82021
  • Stephen Bedford Function spaces for liquid crystals, Archive for Rational Mechanics and Analysis, Volume 219 (2016) no. 2, pp. 937-984 | DOI:10.1007/s00205-015-0913-7 | Zbl:1333.35178
  • Petru Mironescu; Ioana Molnar Phases of unimodular complex valued maps: optimal estimates, the factorization method, and the sum-intersection property of Sobolev spaces, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 32 (2015) no. 5, pp. 965-1013 | DOI:10.1016/j.anihpc.2014.04.005 | Zbl:1339.46037
  • Lorenzo Giacomelli; José M. Mazón; Salvador Moll The 1-Harmonic Flow with Values into S1, SIAM Journal on Mathematical Analysis, Volume 45 (2013) no. 3, p. 1723 | DOI:10.1137/12088402x
  • Radu Ignat; Benoît Merlet Entropy method for line-energies, Calculus of Variations and Partial Differential Equations, Volume 44 (2012) no. 3-4, pp. 375-418 | DOI:10.1007/s00526-011-0438-3 | Zbl:1241.49010
  • RADU IGNAT SINGULARITIES OF DIVERGENCE-FREE VECTOR FIELDS WITH VALUES INTO S1OR S2: APPLICATIONS TO MICROMAGNETICS, Confluentes Mathematici, Volume 04 (2012) no. 03, p. 1230001 | DOI:10.1142/s1793744212300012
  • Radu Ignat; Roger Moser A zigzag pattern in micromagnetics, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 98 (2012) no. 2, pp. 139-159 | DOI:10.1016/j.matpur.2012.01.005 | Zbl:1248.49064
  • Radu Ignat Two-dimensional unit-length vector fields of vanishing divergence, Journal of Functional Analysis, Volume 262 (2012) no. 8, pp. 3465-3494 | DOI:10.1016/j.jfa.2012.01.014 | Zbl:1246.46031
  • Radu Ignat Gradient vector fields with values into S1, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 349 (2011) no. 15-16, pp. 883-887 | DOI:10.1016/j.crma.2011.07.024 | Zbl:1225.35052
  • Radu Ignat; Hans Knüpfer Vortex energy and 360 Néel walls in thin-film micromagnetics, Communications on Pure and Applied Mathematics, Volume 63 (2010) no. 12, pp. 1677-1724 | DOI:10.1002/cpa.20322 | Zbl:1200.49046
  • Arkady Poliakovsky On a singular perturbation problem related to optimal lifting in BV-space, Calculus of Variations and Partial Differential Equations, Volume 28 (2007) no. 4, pp. 411-426 | DOI:10.1007/s00526-006-0041-1 | Zbl:1134.49009
  • Radu Ignat; Arkady Poliakovsky On the relation between minimizers of a Γ-limit energy and optimal lifting in BV-space, Communications in Contemporary Mathematics, Volume 9 (2007) no. 4, pp. 447-472 | DOI:10.1142/s0219199707002496 | Zbl:1253.49035
  • Benoît Merlet Two remarks on liftings of maps with values into S1., Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 343 (2006) no. 7, pp. 467-472 | DOI:10.1016/j.crma.2006.07.014 | Zbl:1115.46027
  • Radu Ignat The space BV(S2,S1): minimal connection and optimal lifting, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 22 (2005) no. 3, pp. 283-302 | DOI:10.1016/j.anihpc.2004.07.003 | Zbl:1083.49030
  • Radu Ignat Optimal lifting for BV (S1,S1), Calculus of Variations and Partial Differential Equations, Volume 23 (2005) no. 1, pp. 83-96 | DOI:10.1007/s00526-004-0291-8 | Zbl:1069.49030
  • Arkady Poliakovsky A method for establishing upper bounds for singular perturbation problems, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 341 (2005) no. 2, pp. 97-102 | DOI:10.1016/j.crma.2005.06.009 | Zbl:1068.49009
  • Arkady Poliakovsky On a minimization problem related to lifting of BV functions with values in S1, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 339 (2004) no. 12, pp. 855-860 | DOI:10.1016/j.crma.2004.09.030 | Zbl:1058.49022

Cité par 28 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: