Comptes Rendus
Partial Differential Equations
Lifting of BV functions with values in S1
[Relèvement des fonctions BV à valeurs sur le cercle S1]
Comptes Rendus. Mathématique, Volume 337 (2003) no. 3, pp. 159-164.

On montre que pour tout , il existe une fonction à variation bornée telle que u=eiϕ p.p. dans et |ϕ|BV⩽2|u|BV. La constante 2 est optimale en dimension n>1.

We show that for every , there exists a bounded variation function such that u=eiϕ a.e. on and |ϕ|BV⩽2|u|BV. The constant 2 is optimal in dimension n>1.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00314-5

Juan Dávila 1 ; Radu Ignat 2

1 Departamento de Ingenierı́a Matemática, CMM (UMR CNRS), Universidad de Chile, Casilla 170/3, Correo 3, Santiago, Chile
2 École normale supérieure, 45, rue d'Ulm, 75230 Paris cedex 05, France
@article{CRMATH_2003__337_3_159_0,
     author = {Juan D\'avila and Radu Ignat},
     title = {Lifting of {BV} functions with values in {\protect\emph{S}\protect\textsuperscript{1}}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {159--164},
     publisher = {Elsevier},
     volume = {337},
     number = {3},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00314-5},
     language = {en},
}
TY  - JOUR
AU  - Juan Dávila
AU  - Radu Ignat
TI  - Lifting of BV functions with values in S1
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 159
EP  - 164
VL  - 337
IS  - 3
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00314-5
LA  - en
ID  - CRMATH_2003__337_3_159_0
ER  - 
%0 Journal Article
%A Juan Dávila
%A Radu Ignat
%T Lifting of BV functions with values in S1
%J Comptes Rendus. Mathématique
%D 2003
%P 159-164
%V 337
%N 3
%I Elsevier
%R 10.1016/S1631-073X(03)00314-5
%G en
%F CRMATH_2003__337_3_159_0
Juan Dávila; Radu Ignat. Lifting of BV functions with values in S1. Comptes Rendus. Mathématique, Volume 337 (2003) no. 3, pp. 159-164. doi : 10.1016/S1631-073X(03)00314-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00314-5/

[1] L. Ambrosio; G. Dal Maso A general chain rule for distributional derivatives, Proc. Amer. Math. Soc., Volume 108 (1990), pp. 691-702

[2] L. Ambrosio; N. Fusco; D. Pallara Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, Oxford, 2000

[3] F. Bethuel; X.M. Zheng Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., Volume 80 (1988), pp. 60-75

[4] J. Bourgain; H. Brezis; P. Mironescu Lifting in Sobolev spaces, J. Anal. Math., Volume 80 (2000), pp. 37-86

[5] J. Bourgain, H. Brezis, P. Mironescu, H1/2 maps with values into the circle: minimal connections, lifting and the Ginzburg–Landau equation, in press

[6] H. Brezis; L. Nirenberg Degree theory and BMO. I. Compact manifolds without boundaries, Selecta Math. (N.S.), Volume 1 (1995), pp. 197-263

[7] R.R. Coifman; Y. Meyer Une généralisation du théorème de Calderón sur l'intégrale de Cauchy, Fourier Analysis (Proc. Sem., El Escorial, 1979), Asoc. Mat. Española, Madrid, 1980, pp. 87-116

[8] M. Giaquinta; G. Modica; J. Soucek Cartesian Currents in the Calculus of Variations, Vol. II, Springer, 1998

  • M. Goldman; B. Merlet; M. Pegon; S. Serfaty COMPACTNESS AND STRUCTURE OF ZERO-STATES FOR UNORIENTED AVILES–GIGA FUNCTIONALS, Journal of the Institute of Mathematics of Jussieu, Volume 23 (2024) no. 2, p. 941 | DOI:10.1017/s1474748023000075
  • Michael Goldman; Benoit Merlet; Vincent Millot A Ginzburg–Landau model with topologically induced free discontinuities, Annales de l'Institut Fourier, Volume 70 (2021) no. 6, p. 2583 | DOI:10.5802/aif.3388
  • Giacomo Canevari; Giandomenico Orlandi Topological singularities for vector-valued Sobolev maps and applications, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 30 (2021) no. 2, p. 327 | DOI:10.5802/afst.1677
  • Giacomo Canevari; Giandomenico Orlandi Improved Partial Regularity for Manifold-Constrained Minimisers of Subquadratic Energies, Communications in Mathematical Physics, Volume 374 (2020) no. 3, p. 1483 | DOI:10.1007/s00220-019-03675-2
  • Giacomo Canevari; Giandomenico Orlandi Lifting for manifold-valued maps of bounded variation, Journal of Functional Analysis, Volume 278 (2020) no. 10, p. 108453 | DOI:10.1016/j.jfa.2019.108453
  • Eduard Curcă Minimal BV-liftings of W1,1Ω,S1 maps in 2D are “often” unique, Nonlinear Analysis, Volume 199 (2020), p. 111943 | DOI:10.1016/j.na.2020.111943
  • Giacomo Canevari; Giandomenico Orlandi Topological singular set of vector-valued maps, I: applications to manifold-constrained Sobolev and BV spaces, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 2 | DOI:10.1007/s00526-019-1501-8
  • Radu Ignat; Xavier Lamy Lifting of RPd1 RP d - 1 -valued maps in BV and applications to uniaxial Q-tensors. With an appendix on an intrinsic BV-energy for manifold-valued maps, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 2 | DOI:10.1007/s00526-019-1511-6
  • Giacomo Canevari; Antonio Segatti Defects in Nematic Shells: A Γ-Convergence Discrete-to-Continuum Approach, Archive for Rational Mechanics and Analysis, Volume 229 (2018) no. 1, p. 125 | DOI:10.1007/s00205-017-1215-z
  • Haim Brezis; Petru Mironescu; Itai Shafrir Distances between classes in W1,1(Ω;S1) W 1 , 1 ( Ω ; S 1 ), Calculus of Variations and Partial Differential Equations, Volume 57 (2018) no. 1 | DOI:10.1007/s00526-017-1280-z
  • Rufat Badal; Marco Cicalese; Lucia De Luca; Marcello Ponsiglione Γ Γ -Convergence Analysis of a Generalized XY Model: Fractional Vortices and String Defects, Communications in Mathematical Physics, Volume 358 (2018) no. 2, p. 705 | DOI:10.1007/s00220-017-3026-3
  • Stephen Bedford Function Spaces for Liquid Crystals, Archive for Rational Mechanics and Analysis, Volume 219 (2016) no. 2, p. 937 | DOI:10.1007/s00205-015-0913-7
  • Petru Mironescu; Ioana Molnar Phases of unimodular complex valued maps: optimal estimates, the factorization method, and the sum-intersection property of Sobolev spaces, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 32 (2015) no. 5, p. 965 | DOI:10.1016/j.anihpc.2014.04.005
  • Lorenzo Giacomelli; José M. Mazón; Salvador Moll The 1-Harmonic Flow with Values into S1, SIAM Journal on Mathematical Analysis, Volume 45 (2013) no. 3, p. 1723 | DOI:10.1137/12088402x
  • Radu Ignat; Benoît Merlet Entropy method for line-energies, Calculus of Variations and Partial Differential Equations, Volume 44 (2012) no. 3-4, p. 375 | DOI:10.1007/s00526-011-0438-3
  • RADU IGNAT SINGULARITIES OF DIVERGENCE-FREE VECTOR FIELDS WITH VALUES INTO S1OR S2: APPLICATIONS TO MICROMAGNETICS, Confluentes Mathematici, Volume 04 (2012) no. 03, p. 1230001 | DOI:10.1142/s1793744212300012
  • Radu Ignat; Roger Moser A zigzag pattern in micromagnetics, Journal de Mathématiques Pures et Appliquées, Volume 98 (2012) no. 2, p. 139 | DOI:10.1016/j.matpur.2012.01.005
  • Radu Ignat Two-dimensional unit-length vector fields of vanishing divergence, Journal of Functional Analysis, Volume 262 (2012) no. 8, p. 3465 | DOI:10.1016/j.jfa.2012.01.014
  • Radu Ignat; Hans Knüpfer Vortex energy and 360° Néel walls in thin‐film micromagnetics, Communications on Pure and Applied Mathematics, Volume 63 (2010) no. 12, p. 1677 | DOI:10.1002/cpa.20322
  • Arkady Poliakovsky On a singular perturbation problem related to optimal lifting in BV-space, Calculus of Variations and Partial Differential Equations, Volume 28 (2007) no. 4, p. 411 | DOI:10.1007/s00526-006-0041-1
  • RADU IGNAT; ARKADY POLIAKOVSKY ON THE RELATION BETWEEN MINIMIZERS OF A Γ-LIMIT ENERGY AND OPTIMAL LIFTING IN BV-SPACE, Communications in Contemporary Mathematics, Volume 09 (2007) no. 04, p. 447 | DOI:10.1142/s0219199707002496
  • Radu Ignat The space BV(S2,S1): minimal connection and optimal lifting, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 22 (2005) no. 3, p. 283 | DOI:10.1016/j.anihpc.2004.07.003
  • Radu Ignat Optimal lifting for BV(S 1,S 1), Calculus of Variations and Partial Differential Equations, Volume 23 (2005) no. 1, p. 83 | DOI:10.1007/s00526-004-0291-8

Cité par 23 documents. Sources : Crossref

Commentaires - Politique