[Relèvement des fonctions BV à valeurs sur le cercle S1]
On montre que pour tout , il existe une fonction à variation bornée telle que u=eiϕ p.p. dans et |ϕ|BV⩽2|u|BV. La constante 2 est optimale en dimension n>1.
We show that for every , there exists a bounded variation function such that u=eiϕ a.e. on and |ϕ|BV⩽2|u|BV. The constant 2 is optimal in dimension n>1.
Accepté le :
Publié le :
Juan Dávila 1 ; Radu Ignat 2
@article{CRMATH_2003__337_3_159_0, author = {Juan D\'avila and Radu Ignat}, title = {Lifting of {BV} functions with values in {\protect\emph{S}\protect\textsuperscript{1}}}, journal = {Comptes Rendus. Math\'ematique}, pages = {159--164}, publisher = {Elsevier}, volume = {337}, number = {3}, year = {2003}, doi = {10.1016/S1631-073X(03)00314-5}, language = {en}, }
Juan Dávila; Radu Ignat. Lifting of BV functions with values in S1. Comptes Rendus. Mathématique, Volume 337 (2003) no. 3, pp. 159-164. doi : 10.1016/S1631-073X(03)00314-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00314-5/
[1] A general chain rule for distributional derivatives, Proc. Amer. Math. Soc., Volume 108 (1990), pp. 691-702
[2] Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, Oxford, 2000
[3] Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., Volume 80 (1988), pp. 60-75
[4] Lifting in Sobolev spaces, J. Anal. Math., Volume 80 (2000), pp. 37-86
[5] J. Bourgain, H. Brezis, P. Mironescu, H1/2 maps with values into the circle: minimal connections, lifting and the Ginzburg–Landau equation, in press
[6] Degree theory and BMO. I. Compact manifolds without boundaries, Selecta Math. (N.S.), Volume 1 (1995), pp. 197-263
[7] Une généralisation du théorème de Calderón sur l'intégrale de Cauchy, Fourier Analysis (Proc. Sem., El Escorial, 1979), Asoc. Mat. Española, Madrid, 1980, pp. 87-116
[8] Cartesian Currents in the Calculus of Variations, Vol. II, Springer, 1998
- Compactness and structure of zero-states for unoriented Aviles-Giga functionals, Journal of the Institute of Mathematics of Jussieu, Volume 23 (2024) no. 2, pp. 941-982 | DOI:10.1017/s1474748023000075 | Zbl:1535.49037
- Upper bounds for the relaxed area of
-valued Sobolev maps and its countably subadditive interior envelope, Revista Matemática Iberoamericana, Volume 40 (2024) no. 6, pp. 2135-2178 | DOI:10.4171/rmi/1475 | Zbl:7958542 - A Ginzburg-Landau model with topologically induced free discontinuities, Annales de l'Institut Fourier, Volume 70 (2020) no. 6, pp. 2583-2675 | DOI:10.5802/aif.3388 | Zbl:1468.35191
- Topological singularities for vector-valued Sobolev maps and applications, Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série VI, Volume 30 (2021) no. 2, pp. 327-351 | DOI:10.5802/afst.1677 | Zbl:1471.58009
- Improved partial regularity for manifold-constrained minimisers of subquadratic energies, Communications in Mathematical Physics, Volume 374 (2020) no. 3, pp. 1483-1495 | DOI:10.1007/s00220-019-03675-2 | Zbl:1433.76015
- Lifting for manifold-valued maps of bounded variation, Journal of Functional Analysis, Volume 278 (2020) no. 10, p. 17 (Id/No 108453) | DOI:10.1016/j.jfa.2019.108453 | Zbl:1442.53011
- Minimal BV-liftings of
maps in 2D are “often” unique, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 199 (2020), p. 13 (Id/No 111943) | DOI:10.1016/j.na.2020.111943 | Zbl:1462.46036 - Topological singular set of vector-valued maps. I: Applications to manifold-constrained Sobolev and BV spaces, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 2, p. 40 (Id/No 72) | DOI:10.1007/s00526-019-1501-8 | Zbl:1411.58004
- Lifting of
-valued maps in and applications to uniaxial -tensors. With an appendix on an intrinsic -energy for manifold-valued maps, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 2, p. 26 (Id/No 68) | DOI:10.1007/s00526-019-1511-6 | Zbl:1411.49032 - Defects in nematic shells: a
-convergence discrete-to-continuum approach, Archive for Rational Mechanics and Analysis, Volume 229 (2018) no. 1, pp. 125-186 | DOI:10.1007/s00205-017-1215-z | Zbl:1401.82047 - Distances between classes in
, Calculus of Variations and Partial Differential Equations, Volume 57 (2018) no. 1, p. 32 (Id/No 14) | DOI:10.1007/s00526-017-1280-z | Zbl:1404.58019 -
-convergence analysis of a generalized model: fractional vortices and string defects, Communications in Mathematical Physics, Volume 358 (2018) no. 2, pp. 705-739 | DOI:10.1007/s00220-017-3026-3 | Zbl:1394.82021 - Function spaces for liquid crystals, Archive for Rational Mechanics and Analysis, Volume 219 (2016) no. 2, pp. 937-984 | DOI:10.1007/s00205-015-0913-7 | Zbl:1333.35178
- Phases of unimodular complex valued maps: optimal estimates, the factorization method, and the sum-intersection property of Sobolev spaces, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 32 (2015) no. 5, pp. 965-1013 | DOI:10.1016/j.anihpc.2014.04.005 | Zbl:1339.46037
- The 1-Harmonic Flow with Values into
, SIAM Journal on Mathematical Analysis, Volume 45 (2013) no. 3, p. 1723 | DOI:10.1137/12088402x - Entropy method for line-energies, Calculus of Variations and Partial Differential Equations, Volume 44 (2012) no. 3-4, pp. 375-418 | DOI:10.1007/s00526-011-0438-3 | Zbl:1241.49010
- SINGULARITIES OF DIVERGENCE-FREE VECTOR FIELDS WITH VALUES INTO S1OR S2: APPLICATIONS TO MICROMAGNETICS, Confluentes Mathematici, Volume 04 (2012) no. 03, p. 1230001 | DOI:10.1142/s1793744212300012
- A zigzag pattern in micromagnetics, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 98 (2012) no. 2, pp. 139-159 | DOI:10.1016/j.matpur.2012.01.005 | Zbl:1248.49064
- Two-dimensional unit-length vector fields of vanishing divergence, Journal of Functional Analysis, Volume 262 (2012) no. 8, pp. 3465-3494 | DOI:10.1016/j.jfa.2012.01.014 | Zbl:1246.46031
- Gradient vector fields with values into
, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 349 (2011) no. 15-16, pp. 883-887 | DOI:10.1016/j.crma.2011.07.024 | Zbl:1225.35052 - Vortex energy and
Néel walls in thin-film micromagnetics, Communications on Pure and Applied Mathematics, Volume 63 (2010) no. 12, pp. 1677-1724 | DOI:10.1002/cpa.20322 | Zbl:1200.49046 - On a singular perturbation problem related to optimal lifting in BV-space, Calculus of Variations and Partial Differential Equations, Volume 28 (2007) no. 4, pp. 411-426 | DOI:10.1007/s00526-006-0041-1 | Zbl:1134.49009
- On the relation between minimizers of a
-limit energy and optimal lifting in -space, Communications in Contemporary Mathematics, Volume 9 (2007) no. 4, pp. 447-472 | DOI:10.1142/s0219199707002496 | Zbl:1253.49035 - Two remarks on liftings of maps with values into
., Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 343 (2006) no. 7, pp. 467-472 | DOI:10.1016/j.crma.2006.07.014 | Zbl:1115.46027 - The space
: minimal connection and optimal lifting, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 22 (2005) no. 3, pp. 283-302 | DOI:10.1016/j.anihpc.2004.07.003 | Zbl:1083.49030 - Optimal lifting for BV
, Calculus of Variations and Partial Differential Equations, Volume 23 (2005) no. 1, pp. 83-96 | DOI:10.1007/s00526-004-0291-8 | Zbl:1069.49030 - A method for establishing upper bounds for singular perturbation problems, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 341 (2005) no. 2, pp. 97-102 | DOI:10.1016/j.crma.2005.06.009 | Zbl:1068.49009
- On a minimization problem related to lifting of BV functions with values in
, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 339 (2004) no. 12, pp. 855-860 | DOI:10.1016/j.crma.2004.09.030 | Zbl:1058.49022
Cité par 28 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier