Comptes Rendus
Partial Differential Equations
Two remarks on liftings of maps with values into S1
[Deux remarques sur les relèvements d'applications à valeurs dans S1]
Comptes Rendus. Mathématique, Volume 343 (2006) no. 7, pp. 467-472.

Étant donnée une application uLloc1(Ω,S1) ayant une certaine régularité : |u|X=R<, nous cherchons un relèvement φ de u (i.e. une fonction mesurable telle que u=eiφ) ayant la même régularité et avec le meilleur contrôle possible de |φ|X en fonction de R. On traite deux cas :

(i) ||X est une seminorme Ws,p(0,1), avec 0<s<1<p et sp>1. Nous trouvons un relèvement φ satisfaisant |φ|Ws,p(I)C(R+R1/s) et nous montrons que l'exposant 1/s ne peut être amélioré.

(ii) ||X est la seminorme BV(Ω)ΩRd est un ouvert régulier. Nous donnons une preuve simplifiée d'un résultat préexistant [J. Dàvila, R. Ignat, Lifting of BV functions with values in S1, C. R. Acad. Sci. Paris, Ser. I 337 (3) (2003) 159–164] : il existe φBV(Ω) telle que |φ|BV2R.

Given a map uLloc1(Ω,S1) with some regularity: |u|X=R<, we consider the problem of finding a lifting φ of u (i.e. a measurable function satisfying u=eiφ) with the same regularity and with an optimal control |φ|Xg(R). Two cases are treated here:

(i) ||X is a Ws,p(0,1)-seminorm, with 0<s<1<p and sp>1. We find a lifting φ such that |φ|Ws,p(I)C(R+R1/s) and we show that the exponent 1/s cannot be improved.

(ii) ||X is the BV(Ω)-seminorm where ΩRd is a smooth open set. We give a simplified proof of a previous result [J. Dàvila, R. Ignat, Lifting of BV functions with values in S1, C. R. Acad. Sci. Paris, Ser. I 337 (3) (2003) 159–164]: there exists φBV(Ω) satisfying |φ|BV2R.

Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.07.014

Benoît Merlet 1

1 LAGA, Institut Galilée, université Paris 13, 99, avenue J.-B. Clément, 93430 Villetaneuse, France
@article{CRMATH_2006__343_7_467_0,
     author = {Beno{\^\i}t Merlet},
     title = {Two remarks on liftings of maps with values into $ {S}^{1}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {467--472},
     publisher = {Elsevier},
     volume = {343},
     number = {7},
     year = {2006},
     doi = {10.1016/j.crma.2006.07.014},
     language = {en},
}
TY  - JOUR
AU  - Benoît Merlet
TI  - Two remarks on liftings of maps with values into $ {S}^{1}$
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 467
EP  - 472
VL  - 343
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2006.07.014
LA  - en
ID  - CRMATH_2006__343_7_467_0
ER  - 
%0 Journal Article
%A Benoît Merlet
%T Two remarks on liftings of maps with values into $ {S}^{1}$
%J Comptes Rendus. Mathématique
%D 2006
%P 467-472
%V 343
%N 7
%I Elsevier
%R 10.1016/j.crma.2006.07.014
%G en
%F CRMATH_2006__343_7_467_0
Benoît Merlet. Two remarks on liftings of maps with values into $ {S}^{1}$. Comptes Rendus. Mathématique, Volume 343 (2006) no. 7, pp. 467-472. doi : 10.1016/j.crma.2006.07.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.07.014/

[1] L. Ambrosio; G. Dal Maso A general chain rule for distributional derivatives, Proc. Amer. Math. Soc., Volume 108 (1990), pp. 691-702

[2] J. Bourgain; H. Brezis; P. Mironescu Lifting in Sobolev spaces, J. Anal. Math., Volume 80 (2000), pp. 37-86

[3] J. Bourgain; H. Brezis; P. Mironescu Another look at Sobolev spaces, Optimal Control and Partial Differential Equations, 2001, pp. 439-455

[4] J. Bourgain; H. Brezis; P. Mironescu H1/2 maps with values into the circle: minimal connections, lifting, and the Ginzburg–Landau equation, Publ. Math. Inst. Hautes Études, Volume 99 (2004), pp. 1-115

[5] H. Brezis How to recognize constant functions. A connection with Sobolev spaces, Uspekhi Mat. Nauk, Volume 57 (2002) no. 4(346), pp. 59-74

[6] D. Chiron, On the definitions of Sobolev and BV spaces into singular spaces and the trace problem, Preprint, Laboratoire J.A. Dieudonné, Université Nice-Sophia Antipolis, 2006

[7] J. Dávila On an open question about functions of bounded variation, Calc. Var. Partial Differential Equations, Volume 15 (2002) no. 4, pp. 519-527

[8] J. Dávila; R. Ignat Lifting of BV functions with values in S1, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 337 (2003) no. 3, pp. 159-164

[9] A.I. Vol'pert Spaces BV and quasilinear equations, Math. Sb. (N.S.), Volume 73 (1967) no. 115, pp. 255-302 (in Russian)

Cité par Sources :

Commentaires - Politique