Comptes Rendus
Partial Differential Equations
Lifting of BV functions with values in S1
[Relèvement des fonctions BV à valeurs sur le cercle S1]
Comptes Rendus. Mathématique, Volume 337 (2003) no. 3, pp. 159-164.

On montre que pour tout , il existe une fonction à variation bornée telle que u=eiϕ p.p. dans et |ϕ|BV⩽2|u|BV. La constante 2 est optimale en dimension n>1.

We show that for every , there exists a bounded variation function such that u=eiϕ a.e. on and |ϕ|BV⩽2|u|BV. The constant 2 is optimal in dimension n>1.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00314-5
Juan Dávila 1 ; Radu Ignat 2

1 Departamento de Ingenierı́a Matemática, CMM (UMR CNRS), Universidad de Chile, Casilla 170/3, Correo 3, Santiago, Chile
2 École normale supérieure, 45, rue d'Ulm, 75230 Paris cedex 05, France
@article{CRMATH_2003__337_3_159_0,
     author = {Juan D\'avila and Radu Ignat},
     title = {Lifting of {BV} functions with values in {\protect\emph{S}\protect\textsuperscript{1}}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {159--164},
     publisher = {Elsevier},
     volume = {337},
     number = {3},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00314-5},
     language = {en},
}
TY  - JOUR
AU  - Juan Dávila
AU  - Radu Ignat
TI  - Lifting of BV functions with values in S1
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 159
EP  - 164
VL  - 337
IS  - 3
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00314-5
LA  - en
ID  - CRMATH_2003__337_3_159_0
ER  - 
%0 Journal Article
%A Juan Dávila
%A Radu Ignat
%T Lifting of BV functions with values in S1
%J Comptes Rendus. Mathématique
%D 2003
%P 159-164
%V 337
%N 3
%I Elsevier
%R 10.1016/S1631-073X(03)00314-5
%G en
%F CRMATH_2003__337_3_159_0
Juan Dávila; Radu Ignat. Lifting of BV functions with values in S1. Comptes Rendus. Mathématique, Volume 337 (2003) no. 3, pp. 159-164. doi : 10.1016/S1631-073X(03)00314-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00314-5/

[1] L. Ambrosio; G. Dal Maso A general chain rule for distributional derivatives, Proc. Amer. Math. Soc., Volume 108 (1990), pp. 691-702

[2] L. Ambrosio; N. Fusco; D. Pallara Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, Oxford, 2000

[3] F. Bethuel; X.M. Zheng Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., Volume 80 (1988), pp. 60-75

[4] J. Bourgain; H. Brezis; P. Mironescu Lifting in Sobolev spaces, J. Anal. Math., Volume 80 (2000), pp. 37-86

[5] J. Bourgain, H. Brezis, P. Mironescu, H1/2 maps with values into the circle: minimal connections, lifting and the Ginzburg–Landau equation, in press

[6] H. Brezis; L. Nirenberg Degree theory and BMO. I. Compact manifolds without boundaries, Selecta Math. (N.S.), Volume 1 (1995), pp. 197-263

[7] R.R. Coifman; Y. Meyer Une généralisation du théorème de Calderón sur l'intégrale de Cauchy, Fourier Analysis (Proc. Sem., El Escorial, 1979), Asoc. Mat. Española, Madrid, 1980, pp. 87-116

[8] M. Giaquinta; G. Modica; J. Soucek Cartesian Currents in the Calculus of Variations, Vol. II, Springer, 1998

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Two remarks on liftings of maps with values into S1

Benoît Merlet

C. R. Math (2006)


On a minimization problem related to lifting of BV functions with values in S1

Arkady Poliakovsky

C. R. Math (2004)


A method for establishing upper bounds for singular perturbation problems

Arkady Poliakovsky

C. R. Math (2005)