Comptes Rendus
Algebraic Geometry
Symplectic resolutions for nilpotent orbits (II)
[Résolutions symplectiques pour les orbites nilpotentes (II)]
Comptes Rendus. Mathématique, Volume 337 (2003) no. 4, pp. 277-281.

En utilisant notre résultat précédent, Fu (Invent. Math. 151 (2003) 167–186), nous montrons qu'étant données deux résolutions symplectiques projectives Z1 et Z2 d'une adhérence d'orbite nilpotente dans une algèbre de Lie simple classique, Z1 est déformation équivalente à Z2. En particulier, ceci vérifie une conjecture « folklore » sur les résolutions symplectiques pour les singularités symplectiques.

Based on our previous work, Fu (Invent. Math. 151 (2003) 167–186), we prove that, given any two projective symplectic resolutions Z1 and Z2 of a nilpotent orbit closure in a complex simple Lie algebra of classical type, Z1 is deformation equivalent to Z2. This provides support for a ‘folklore’ conjecture on symplectic resolutions for symplectic singularities.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00346-7

Baohua Fu 1

1 Laboratoire J.A. Dieudonné, Université de Nice Sophia-Antipolis, parc Valrose, 06108 Nice cedex 02, France
@article{CRMATH_2003__337_4_277_0,
     author = {Baohua Fu},
     title = {Symplectic resolutions for nilpotent orbits {(II)}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {277--281},
     publisher = {Elsevier},
     volume = {337},
     number = {4},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00346-7},
     language = {en},
}
TY  - JOUR
AU  - Baohua Fu
TI  - Symplectic resolutions for nilpotent orbits (II)
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 277
EP  - 281
VL  - 337
IS  - 4
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00346-7
LA  - en
ID  - CRMATH_2003__337_4_277_0
ER  - 
%0 Journal Article
%A Baohua Fu
%T Symplectic resolutions for nilpotent orbits (II)
%J Comptes Rendus. Mathématique
%D 2003
%P 277-281
%V 337
%N 4
%I Elsevier
%R 10.1016/S1631-073X(03)00346-7
%G en
%F CRMATH_2003__337_4_277_0
Baohua Fu. Symplectic resolutions for nilpotent orbits (II). Comptes Rendus. Mathématique, Volume 337 (2003) no. 4, pp. 277-281. doi : 10.1016/S1631-073X(03)00346-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00346-7/

[1] A. Beauville Symplectic singularities, Invent. Math., Volume 139 (2000), pp. 541-549

[2] D. Collingwood; W. Mc Govern Nilpotent Orbits in Semi-Simple Lie Algebras, Van Nostrand Reinhold, New York, 1993

[3] B. Fu Symplectic resolutions for nilpotent orbits, Invent. Math., Volume 151 (2003), pp. 167-186

[4] B. Fu; Y. Namikawa Uniqueness of crepant resolutions and symplectic singularities | arXiv

[5] W. Hesselink Polarizations in the classical groups, Math. Z., Volume 160 (1978), pp. 217-234

[6] D. Huybrechts Compact hyper-Kähler manifolds: basic results, Invent. Math., Volume 135 (1999), pp. 63-113

[7] D. Kaledin Symplectic resolutions: deformations and birational maps | arXiv

  • Ronan Terpereau Invariant Hilbert schemes and desingularizations of symplectic reductions for classical groups, Mathematische Zeitschrift, Volume 277 (2014) no. 1-2, pp. 339-359 | DOI:10.1007/s00209-013-1259-1 | Zbl:1327.14027
  • Baohua Fu Wreath products, nilpotent orbits and symplectic deformations, International Journal of Mathematics, Volume 18 (2007) no. 5, pp. 473-481 | DOI:10.1142/s0129167x07004187 | Zbl:1124.14021
  • Baohua Fu A survey on symplectic singularities and symplectic resolutions, Annales Mathématiques Blaise Pascal, Volume 13 (2006) no. 2, pp. 209-236 | DOI:10.5802/ambp.218 | Zbl:1116.14008
  • Baohua Fu Symplectic resolutions for nilpotent orbits. III., Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 342 (2006) no. 8, pp. 585-588 | DOI:10.1016/j.crma.2006.02.004 | Zbl:1093.14020
  • Baohua Fu; Yoshinori Namikawa Uniqueness of crepant resolutions and symplectic singularities., Annales de l'Institut Fourier, Volume 54 (2004) no. 1, pp. 1-19 | DOI:10.5802/aif.2008 | Zbl:1063.14018

Cité par 5 documents. Sources : zbMATH

Commentaires - Politique