Soit
Let
Accepté le :
Publié le :
Pierre Baumann 1 ; Stéphane Gaussent 2 ; Joel Kamnitzer 3
@article{CRMATH_2012__350_23-24_999_0, author = {Pierre Baumann and St\'ephane Gaussent and Joel Kamnitzer}, title = {R\'eflexions dans un cristal}, journal = {Comptes Rendus. Math\'ematique}, pages = {999--1002}, publisher = {Elsevier}, volume = {350}, number = {23-24}, year = {2012}, doi = {10.1016/j.crma.2012.11.012}, language = {fr}, }
Pierre Baumann; Stéphane Gaussent; Joel Kamnitzer. Réflexions dans un cristal. Comptes Rendus. Mathématique, Volume 350 (2012) no. 23-24, pp. 999-1002. doi : 10.1016/j.crma.2012.11.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.11.012/
[1] Affine Mirković–Vilonen polytopes (prépublication) | arXiv
[2] Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math., Volume 143 (2001), pp. 77-128
[3] Cluster structures for 2-Calabi–Yau categories and unipotent groups, Compos. Math., Volume 145 (2009), pp. 1035-1079
[4] MV-polytopes via affine buildings, Duke Math. J., Volume 155 (2010), pp. 433-482
[5] Kac–Moody groups and cluster algebras, Adv. Math., Volume 228 (2011), pp. 329-433
[6] On crystal bases, Banff, 1994 (CMS Conf. Proc.), Volume vol. 16, American Mathematical Society (1995), pp. 155-197
[7] Similarity of crystal bases, Seoul, 1995 (Contemp. Math.), Volume vol. 194, American Mathematical Society (1996), pp. 177-186
[8] Geometric construction of crystal bases, Duke Math. J., Volume 89 (1997), pp. 9-36
[9] Relèvement géométrique de la base canonique et involution de Schützenberger, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 371-374
[10] Affine PBW bases and MV polytopes in rank 2 (prépublication) | arXiv
[11] PBW basis of quantized universal enveloping algebras, Publ. Res. Inst. Math. Sci., Volume 30 (1994), pp. 209-232
Cité par Sources :
Commentaires - Politique