[A note on div–curl lemmata]
Let be a strongly Lipschitz domain of (n⩾2). We give endpoint versions of div–curl lemmata on , for a given function f on whose gradient belongs to a Hardy space on .
Soit un domaine fortement lipschitzien de (n⩾2). On donne des versions limites des lemmes div–curl sur , pour une fonction donnée f sur dont le gradient appartient à un espace de Hardy sur .
Accepted:
Published online:
Pascal Auscher 1; Emmanuel Russ 2; Philippe Tchamitchian 2
@article{CRMATH_2003__337_8_511_0, author = {Pascal Auscher and Emmanuel Russ and Philippe Tchamitchian}, title = {Une note sur les lemmes div{\textendash}curl}, journal = {Comptes Rendus. Math\'ematique}, pages = {511--516}, publisher = {Elsevier}, volume = {337}, number = {8}, year = {2003}, doi = {10.1016/j.crma.2003.08.004}, language = {fr}, }
Pascal Auscher; Emmanuel Russ; Philippe Tchamitchian. Une note sur les lemmes div–curl. Comptes Rendus. Mathématique, Volume 337 (2003) no. 8, pp. 511-516. doi : 10.1016/j.crma.2003.08.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.08.004/
[1] P. Auscher, E. Russ, P. Tchamitchian, Hardy–Sobolev spaces on strongly Lipschitz domains of , Preprint
[2] Hardy spaces, BMO and boundary value problems for the Laplacian on a smooth domain in , Trans. Amer. Math. Soc., Volume 351 (1999) no. 4, pp. 1605-1661
[3] Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9), Volume 72 (1993) no. 3, pp. 247-286
[4] Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., Volume 83 (1997), pp. 569-645
[5] Lemme Div–Curl et renormalisations du produit, J. Math. Pures Appl. (9), Volume 72 (1993) no. 2, pp. 239-245
[6] Hp spaces of several variables, Acta Math., Volume 129 (1972), pp. 137-195
[7] Atomic decomposition of divergence-free Hardy spaces, Special Vol., Proc. 5th IWAA (Math. Moravica) (1997), pp. 33-52
[8] Global higher integrability of Jacobians on bounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 17 (2000) no. 2, pp. 193-217
[9] Z. Lou, Hardy spaces of exact forms on domains, Ph.D. thesis, Australian National University, 2002
Cited by Sources:
Comments - Policy