We study the stabilization of systems of two equations, for which only one equation is damped by a feedback control. We show that a well chosen control can compensate the real parts of the eigenvalues of the system, therefore, giving the optimal polynomial energy decay rate of the system for smooth initial data.
Nous étudions la stabilisation d'un système de deux équations linéaires, dont une seule équation est amortie par un contrôle feedback. Nous montrons qu'un contrôle convenablement choisi peut compenser les parties réelles des valeures propres du système, et donc fournir le meilleur taux de décroissance polynomiale de l'énergie du système pour des données initiales régulières.
Accepted:
Published online:
Paola Loreti 1; Bopeng Rao 2
@article{CRMATH_2003__337_8_531_0, author = {Paola Loreti and Bopeng Rao}, title = {Compensation spectrale et taux de d\'ecroissance optimal de~l'\'energie de syst\`emes partiellement amortis}, journal = {Comptes Rendus. Math\'ematique}, pages = {531--536}, publisher = {Elsevier}, volume = {337}, number = {8}, year = {2003}, doi = {10.1016/j.crma.2003.08.009}, language = {fr}, }
TY - JOUR AU - Paola Loreti AU - Bopeng Rao TI - Compensation spectrale et taux de décroissance optimal de l'énergie de systèmes partiellement amortis JO - Comptes Rendus. Mathématique PY - 2003 SP - 531 EP - 536 VL - 337 IS - 8 PB - Elsevier DO - 10.1016/j.crma.2003.08.009 LA - fr ID - CRMATH_2003__337_8_531_0 ER -
Paola Loreti; Bopeng Rao. Compensation spectrale et taux de décroissance optimal de l'énergie de systèmes partiellement amortis. Comptes Rendus. Mathématique, Volume 337 (2003) no. 8, pp. 531-536. doi : 10.1016/j.crma.2003.08.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.08.009/
[1] Indirect internal stabilization of weakly coupled evolution equations, J. Evolution Equations, Volume 2 (2002), pp. 127-150
[2] A note on weak stabilizability of contraction semigroups, SIAM J. Control Optim., Volume 16 (1987), pp. 373-379
[3] Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces, Chinese Ann. Differential Equations, Volume 1 (1985), pp. 43-56
[4] Singular inter stabilization of the wave equation, J. Differential Equations, Volume 45 (1998), pp. 184-215
[5] On the spectral properties and stabilization of acoustic flow, SIAM J. Appl. Math., Volume 59 (1999), pp. 17-34
[6] Some recent results on control and stabilization of flexible structures, Proc. COMCON Workshop, Montpellier, 1987
[7] Contrôlabilité exacte et stabilisation de systèmes distribués, Masson, Paris, 1988
[8] Exponential stability of an abstract non-dissipative linear system, J. SIAM Control Optim., Volume 40 (2001), pp. 149-165
[9] Optimal energy decay rate in the Rayleigh beam equation (Cox; Lasiecka, eds.), Optimization Methods in Partial Differential Equations, Contemp. Math., 209, 1997, pp. 211-229
[10] Stabilization of a plate equation with dynamical boundary control, J. SIAM Control Optim., Volume 36 (1998), pp. 148-163
[11] A general framework for the study of indirect damping mechanisms in elastic systems, J. Math. Anal. Appl., Volume 173 (1993), pp. 339-358
Cited by Sources:
Comments - Policy