[Grandes déviations pour les mesures invariantes de systèmes généraux d'équations de réaction–diffusion stochastiques]
Dans cet article on prouve un principe de grandes déviations pour les mesures invariantes de systèmes de réaction–diffusion stochastiques dans des domaines bornés de
In this paper we prove a large deviations principle for the invariant measures of a class of reaction–diffusion systems in bounded domains of
Accepté le :
Publié le :
Sandra Cerrai 1 ; Michael Röckner 2
@article{CRMATH_2003__337_9_597_0, author = {Sandra Cerrai and Michael R\"ockner}, title = {Large deviations for invariant measures of general stochastic reaction{\textendash}diffusion systems}, journal = {Comptes Rendus. Math\'ematique}, pages = {597--602}, publisher = {Elsevier}, volume = {337}, number = {9}, year = {2003}, doi = {10.1016/j.crma.2003.09.015}, language = {en}, }
TY - JOUR AU - Sandra Cerrai AU - Michael Röckner TI - Large deviations for invariant measures of general stochastic reaction–diffusion systems JO - Comptes Rendus. Mathématique PY - 2003 SP - 597 EP - 602 VL - 337 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2003.09.015 LA - en ID - CRMATH_2003__337_9_597_0 ER -
Sandra Cerrai; Michael Röckner. Large deviations for invariant measures of general stochastic reaction–diffusion systems. Comptes Rendus. Mathématique, Volume 337 (2003) no. 9, pp. 597-602. doi : 10.1016/j.crma.2003.09.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.09.015/
[1] Grandes déviations et applications, École d'Été de Probabilités de Saint-Flour VII, Lecture Notes in Math., 774, Springer-Verlag, 1980
[2] Second Order PDE's in Finite and Infinite Dimension. A Probabilistic Approach, Lecture Notes in Math., 1762, Springer-Verlag, 2001
[3] Stochastic reaction–diffusion systems with multiplicative noise and non-Lipschitz reaction term, Probab. Theory Related Fields, Volume 125 (2003), pp. 271-304
[4] S. Cerrai, M. Röckner, Large deviations for stochastic reaction–diffusion systems with multiplicative noise and non-Lipschitz reaction term, Ann. Probab., in press
[5] Random perturbations of reaction–diffusion equations: the quasi deterministic approximation, Trans. Amer. Math. Soc., Volume 305 (1988), pp. 665-697
[6] Large deviations for a reaction–diffusion equation with non-Gaussian perturbation, Ann. Probab., Volume 20 (1992), pp. 504-537
[7] Large deviations for the invariant measure of a reaction–diffusion equation with non-Gaussian perturbations, Probab. Theory Related Fields, Volume 92 (1992), pp. 393-421
- Stochastic Systems, Multiple Time Scale Dynamics, Volume 191 (2015), p. 477 | DOI:10.1007/978-3-319-12316-5_15
- Large deviations for nonlocal stochastic neural fields, The Journal of Mathematical Neuroscience, Volume 4 (2014), p. 33 (Id/No 1) | DOI:10.1186/2190-8567-4-1 | Zbl:1291.92038
- Stabilization by noise for a class of stochastic reaction-diffusion equations, Probability Theory and Related Fields, Volume 133 (2005) no. 2, pp. 190-214 | DOI:10.1007/s00440-004-0421-4 | Zbl:1077.60046
Cité par 3 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier